Clinical Trials Logo

Leukemia, Myeloid, Acute clinical trials

View clinical trials related to Leukemia, Myeloid, Acute.

Filter by:

NCT ID: NCT05139004 Recruiting - Clinical trials for Acute Myeloid Leukemia

90Y-DOTA-anti-CD25 Basiliximab, Fludarabine, Melphalan, and Total Marrow and Lymphoid Irradiation for the Treatment of High-Risk Acute Leukemia or Myelodysplastic Syndrome

Start date: July 19, 2022
Phase: Phase 1
Study type: Interventional

This phase I trial is to find out the best dose, possible benefits and/or side effects of 90Y-DOTA-anti-CD25 basiliximab given together with fludarabine, melphalan, and total marrow and lymphoid irradiation (TMLI) in treating patients with high-risk acute leukemia or myelodysplastic syndrome. 90Y-DOTA-anti-CD25 basiliximab is a monoclonal antibody, called basiliximab, linked to a radioactive agent called 90Y-DOTA. Basiliximab attaches to CD25 positive cancer cells in a targeted way and delivers 90Y-DOTA to kill them. Fludarabine and melphalan are common chemotherapy drugs used to prepare the bone marrow to receive transplanted cells. TMLI is a different type of targeted radiation therapy used to prepare the bone marrow to receive transplanted cells. Giving 90Y-DOTA-anti-CD25 basiliximab together with fludarabine, melphalan, and TMLI may help prepare the bone marrow to receive the transplanted cells for improved transplant outcomes in patients with acute leukemia or myelodysplastic syndrome.

NCT ID: NCT05127798 Recruiting - Clinical trials for Acute Myeloid Leukemia, Adult

RWE of 1st Line Treatment in Adults With AML From 18 to 70 Years Old.

Start date: March 1, 2021
Phase:
Study type: Observational [Patient Registry]

This is a multicenter, observational real world clinical trial with prospective follow up that will evaluate the treatment outcome of Acute Myeloid Leukemia (AML) patients in the first line with intensive chemotherapy based regimens in Argentina.

NCT ID: NCT05124288 Recruiting - Clinical trials for Acute Myeloid Leukemia, in Relapse

Analysis of the Immunobiology of Acute Myeloid Leukemia Relapses After Allogeneic Hematopoietic Stem Cell Transplant (HSCT) for the Generation of Guidelines and Personalized Therapeutic Pathways

GITMO-RELAPSE
Start date: July 18, 2022
Phase:
Study type: Observational

This is a retrospective and prospective non-interventional multicenter observational study. Neither diagnostic approaches nor experimental drugs/procedure will be applied and the samples will take place at the same time as the samples will be taken during routinary clinical practice. The aim of this study is to analyze the immunobiology of Acute Myeloid Leukemia (AML) relapses after allogeneic HSCT for the generation of guidelines and personalized therapeutic pathways.

NCT ID: NCT05105152 Recruiting - Clinical trials for Acute Myeloid Leukemia

PLAT-08: A Study Of SC-DARIC33 CAR T Cells In Pediatric And Young Adults With Relapsed Or Refractory CD33+ AML

Start date: November 29, 2021
Phase: Phase 1
Study type: Interventional

A phase 1, open-label, non-randomized study enrolling pediatric and young adult patients with relapsed or refractory CD33+ leukemia with and without prior history of allogeneic hematopoietic cell transplantation, to examine the safety and feasibility of administering an autologous T cell product that has been genetically modified to express a Dimerizing Agent Regulated Immunoreceptor Complex (DARIC).

NCT ID: NCT05092451 Recruiting - Clinical trials for Acute Myeloid Leukemia (AML)

Phase I/II Study of CAR.70- Engineered IL15-transduced Cord Blood-derived NK Cells in Conjunction With Lymphodepleting Chemotherapy for the Management of Relapse/Refractory Hematological Malignances

Start date: November 1, 2022
Phase: Phase 1/Phase 2
Study type: Interventional

The goal of this clinical research study is to learn about the safety of giving immune cells called natural killer (NK) cells with chemotherapy to patients with leukemia, lymphoma, or multiple myeloma. Immune system cells (such as NK cells) are made by the body to attack foreign or cancerous cells. Researchers think that NK cells you receive from a donor may react against cancer cells in your body, which may help to control the disease.

NCT ID: NCT05086315 Recruiting - Clinical trials for Myelodysplastic Syndromes

First-in-human Study of SAR443579 Infusion in Male and Female Children and Adult Participants With Relapsed or Refractory Acute Myeloid Leukemia (R/R AML), B-cell Acute Lymphoblastic Leukemia (B-ALL), High Risk-myelodysplasia (HR-MDS), or Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN)

Start date: December 8, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

This is an open-label, multicenter, Phase 1/Phase 2, dose escalation and dose expansion study to evaluate the safety, pharmacokinetics, pharmacodynamics and anti-leukemic activity of SAR443579 in various hematological malignancies.

NCT ID: NCT05066958 Recruiting - Clinical trials for Acute Myeloid Leukemia

Ex-vivo Primed Memory Donor Lymphocyte Infusion to Boost Anti-viral Immunity After T-cell Depleted HSCT

Start date: September 16, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

HSCT from an allogeneic donor is the standard therapy for high-risk hematopoietic malignancies and a wide range of severe non-malignant diseases of the blood and immune system. The possibility of performing HSCT was significantly limited by the availability of donors compatible with the MHC system. However, modern ex-vivo and in vivo technologies for depletion of T lymphocytes have made it possible to improve the outcomes of HSCT from partially compatible related (haploidentical) donors. In representative groups, it was shown that the success of HSCT from haploidentical donors is not inferior to standard procedures of HSCT from HLA-compatible unrelated donors. HSCT from haploidentical donors in children associated with the deficit of the adaptive immune response, which persists up to 6 months after HSCT and can be an increased risk of death of the patient from opportunistic infections. To solve this problem, the method of infusion of low doses of donor memory T lymphocytes was introduced. This technology is based on the possibility of adoptive transfer of memory immune response to key viral pathogens from donor to recipient. Such infusions have been shown to be safe and to accelerate the recovery of the pathogen-specific immune response. The expansion of virus-specific T lymphocytes in the recipient's body depends on exposure to the relevant antigen in vivo. Thus, in the absence of contact with the viral antigen, the adoptive transfer of memory T lymphocytes is not accompanied in vivo by the expansion of virus-specific lymphocytes and does not form a circulating pool of memory T lymphocytes, that can protect the patient from infections. Therefore the investigators assume that ex-vivo priming of donor memory lymphocytes with relevant antigens can provide optimal antigenic stimulation and may solve the problem of restoring immunological reactivity in the early stages after HSCT. Technically ex-vivo primed memory T lymphocytes will be generated by short incubation of CD45RA-depleted fraction of the graft (a product of T lymphocyte depletion) with a pool of GMP-quality peptides representing a number of key proteins of the viral pathogens. The following are proposed as targeted antigens: CMV pp65, EBV EBNA-1, EBV LMP12A, Adeno AdV5 Hexon, BKV LT, BKV VP1. An infusion of donor memory lymphocytes will be performed on the day +1 after transplantation. Parameters of the assessment will be safety and efficacy (immune response by day 60 and stability (responses by day 180).

NCT ID: NCT05061147 Recruiting - Leukemia Clinical Trials

A Study to Evaluate the Safety and Tolerability, Pharmacokinetics, Pharmacodynamics and Preliminary Efficacy of Max-40279-01 in Combination With Azacitidine (AZA) in Patients With Myelodysplastic Syndrome (MDS) or Relapsed/Refractory Acute Myeloid Leukemia (R/R AML)

Start date: September 16, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

This study is a phase Ib/II study of Max-40279-01 in combination with Azacitidine (AZA) in patients with Myelodysplastic Syndrome (MDS) or Relapsed/Refractory Acute Myeloid Leukemia (R/R AML). This study include Phase Ib and Phase II study. The phase Ib study is designed to evaluate the safety and tolerability of MAX-40279-01 in combination with Azacitidine (AZA) in patients with Relapsed or Refractory AML. The phase II study is designed to preliminarily assess the efficacy and safety of Max-40279-01 in combination with Azacitidine (AZA) in patients with Myelodysplastic Syndrome (MDS) or Relapsed/Refractory Acute Myeloid Leukemia (R/R AML).

NCT ID: NCT05053425 Recruiting - Clinical trials for Acute Myeloid Leukemia

Bcl-2 Inhibitors Combined With Azacytidine and Chemotherapy in Elderly Patients With Previously Untreated AML

Start date: October 20, 2021
Phase: N/A
Study type: Interventional

In this prospective study, 30 newly untreated elderly patients with acute myeloid leukemia(AML) who were not suitable for standard chemotherapy were enrolled to observe the efficacy and side effects of venetoclax (VEN) combined with azacytidine (AZA) and chemotherapy in newly treated elderly patients with AML. Overall survival (OS), complete remission rate/complete remission with incomplete recovery of blood cell count (CR/ CRi) were used as the primary endpoints, and time to response (TTR), duration of response (DOR), mortality, and recurrence rate were used as secondary endpoints,and the incidence of adverse events were evaluated.

NCT ID: NCT05042531 Recruiting - Clinical trials for Acute Myeloid Leukemia

Clinical Research for Azacitidine Combined With Low-dose Dasatinib in Maintenance Therapy of Acute Myeloid Leukemia

Start date: November 13, 2021
Phase: N/A
Study type: Interventional

This project is a prospective, single-center study to evaluate the efficacy, safety and related mechanisms of azacitidine combined with low-dose dasatinib in maintenance therapy in patients with intermediate and high-risk acute myeloid leukemia(AML). The patients were randomly divided into azacitidine group and azacitidine combined with low-dose dasatinib group. The overall survival and disease-free survival were taken as the main end points, and the mortality and recurrence rate were taken as the secondary end points, meanwhile, the incidence of adverse events were evaluated. At the same time, the mRNA expressions of DNA methyltransferase (DNMT1, DNMT3a, DNMT3b), tumor suppressor genes (TP53, P15, P16, P21, CDH1, DOK6, SHP1, PTPN11) and differentiation genes (pu.1, C/EBP α, C/EBP β) were detected. Pyrophosphate sequencing was used to detect the methylation level of the promoter region of these tumor suppressor genes. Western Blot was used to detect apoptosis proteins (caspase3, caspase8) and phosphorylated proteins (pSTAT3, pSTAT5, pAKT). The proportion of apoptotic population of bone marrow cells was determined by flow cytometry. Therefore, the data in this study will reflect the efficacy and safety of azacitidine or azacitidine combined with low-dose dasatinib in real-world maintenance therapy in patients with medium and high-risk AML.