Clinical Trials Logo

Leukemia-Lymphoma, Adult T-Cell clinical trials

View clinical trials related to Leukemia-Lymphoma, Adult T-Cell.

Filter by:

NCT ID: NCT00098891 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

MS-275 and Isotretinoin in Treating Patients With Metastatic or Advanced Solid Tumors or Lymphomas

Start date: October 2004
Phase: Phase 1
Study type: Interventional

Phase I trial to study the effectiveness of combining MS-275 with isotretinoin in treating patients who have metastatic or advanced solid tumors or lymphomas. MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Isotretinoin may help cancer cells develop into normal cells. MS-275 may increase the effectiveness of isotretinoin by making cancer cells more sensitive to the drug. MS-275 and isotretinoin may also stop the growth of solid tumors or lymphomas by stopping blood flow to the cancer. Combining MS-275 with isotretinoin may kill more cancer cells

NCT ID: NCT00096005 Terminated - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Tanespimycin and Bortezomib in Treating Patients With Advanced Solid Tumors or Lymphomas

Start date: November 2004
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of giving tanespimycin together with bortezomib in treating patients with advanced solid tumors or lymphomas. (Accrual for lymphoma patients closed as of 11/27/09) Drugs used in chemotherapy, such as tanespimycin, work in different ways to stop cancer cells from dividing so they stop growing or die. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. It may also increase the effectiveness of tanespimycin by making cancer cells more sensitive to the drug. Combining tanespimycin with bortezomib may kill more cancer cells.

NCT ID: NCT00089271 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

17-DMAG in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphomas

Start date: July 2004
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of 17-DMAG in treating patients with metastatic or unresectable solid tumors or lymphomas. Drugs used in chemotherapy, such as 17-DMAG, work in different ways to stop cancer cells from dividing so they stop growing or die

NCT ID: NCT00089011 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Tacrolimus and Mycophenolate Mofetil in Preventing Graft-Versus-Host Disease in Patients Who Have Undergone Total-Body Irradiation With or Without Fludarabine Phosphate Followed by Donor Peripheral Blood Stem Cell Transplant for Hematologic Cancer

Start date: April 2004
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well tacrolimus and mycophenolate mofetil works in preventing graft-versus-host disease in patients who have undergone total-body irradiation (TBI) with or without fludarabine phosphate followed by donor peripheral blood stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening.

NCT ID: NCT00082888 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Tipifarnib in Treating Patients With Relapsed or Refractory Lymphoma

Start date: March 24, 2004
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well tipifarnib works in treating patients with relapsed or refractory non-Hodgkin's lymphoma. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Tipifarnib may be an effective treatment for non-Hodgkin's lymphoma.

NCT ID: NCT00078858 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Mycophenolate Mofetil and Cyclosporine in Reducing Graft-Versus-Host Disease in Patients With Hematologic Malignancies or Metastatic Kidney Cancer Undergoing Donor Stem Cell Transplant

Start date: September 2003
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies whether stopping cyclosporine before mycophenolate mofetil is better at reducing the risk of life-threatening graft-versus-host disease (GVHD) than the previous approach where mycophenolate mofetil was stopped before cyclosporine. The other reason this study is being done because at the present time there are no curative therapies known outside of stem cell transplantation for these types of cancer. Because of age or underlying health status, patients may have a higher likelihood of experiencing harm from a conventional blood stem cell transplant. This study tests whether this new blood stem cell transplant method can be made safer by changing the order and length of time that immune suppressing drugs are given after transplant.

NCT ID: NCT00077155 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Cilengitide (EMD 121974) in Treating Patients With Advanced Solid Tumors or Lymphoma

Start date: December 2003
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of EMD 121974 in treating patients with solid tumors or lymphoma. Cilengitide (EMD 121974) may stop the growth of cancer cells by stopping blood flow to the cancer

NCT ID: NCT00072514 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Gemcitabine Hydrochloride, Carboplatin, Dexamethasone, and Rituximab in Treating Patients With Previously Treated Lymphoid Malignancies

Start date: August 2003
Phase: Phase 2
Study type: Interventional

This pilot phase II trial studies the side effects and how well giving gemcitabine hydrochloride, carboplatin, dexamethasone, and rituximab together works in treating patients with previously treated lymphoid malignancies. Drugs used in chemotherapy, such as gemcitabine hydrochloride, carboplatin, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving more than one drug (combination chemotherapy) and giving monoclonal antibody therapy with chemotherapy may kill more cancer cells

NCT ID: NCT00061048 Completed - Clinical trials for Acute T-Cell Leukemia-Lymphoma

Campath-1H for Treating Adult T-Cell Leukemia/Lymphoma

Start date: May 2003
Phase: Phase 2
Study type: Interventional

This study will examine the safety and effectiveness of Alemtuzumab (Campath-1H) for treating patients with adult T-cell leukemia/lymphoma (ATL). ATL is caused by a virus called human T-cell lymphotrophic virus type-1 (HTLV-1) that infects lymphocytes (white blood cells) called T-cells. Cancerous cells can be found not only in the blood, but also in the skin, lungs, lymph nodes, liver, bone, bone marrow, spleen, and meninges (tissues covering the brain). There are four categories of ATL, based on the aggressiveness of disease-smoldering, chronic, lymphoma, and acute. Campath-1H is a monoclonal antibody that attaches to and kills normal and cancerous lymphocytes, including T cells. Although Campath-1H is an experimental drug for treating ATL, it is approved by the Food and Drug Administration for treating chronic lymphocytic leukemia. Patients 18 years of age and older with any type of ATL except smoldering may be eligible for this study. Candidates are screened with a medical history and physical examination, photos of skin lesions, measurement of lesions such as lymph nodes and skin nodules, blood and urine tests, electrocardiogram (EKG), chest x-ray, computed tomography (CT) scan or ultrasound of the abdomen, skin biopsy, bone marrow aspirate and biopsy, skin test, and lumbar puncture (spinal tap). Participants undergo treatment in two phases, as follows: - Dose escalation phase: Patients receive an infusion of Campath-1H daily for three days. The initial dose is low and is increased daily as long as there are no side effects, or only mild reactions, until the patient is receiving the maximum dose of 30 milligrams per day. - Stable dose phase: Patients receive infusions of Campath-1H 30 mg three times a week for up to 12 weeks. In addition to treatment, patients are evaluated with the following tests and procedures: - History and physical examination every 4 weeks. - Blood tests every 4 weeks. - CT scans to measure the size of the tumors every 4 weeks. - Skin biopsies (if skin disease is present) and lymph note aspirates: Up to five biopsies and five aspirates may be taken to help diagnose the disease and evaluate the effect of Campath-1H on the cancer. - Bone marrow biopsy: This procedure may be done to document or monitor disease progress. Patients receive treatment for up to 12 weeks. Treatment may stop earlier if the patient achieves a complete response before the end of 12 weeks. Patients completing the study are followed periodically with a history and physical examination, blood and urine tests, tumor evaluation, skin biopsy and skin testing. They are seen monthly at first and then at 3-month intervals the first year; every 4 months the second year, every 6 months for the third through fifth years, and then yearly.

NCT ID: NCT00060112 Terminated - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Oblimersen and Gemcitabine in Treating Patients With Advanced Solid Tumor or Lymphoma

Start date: March 2003
Phase: Phase 1
Study type: Interventional

Drugs used in chemotherapy such as gemcitabine use different ways to stop cancer cells from dividing so they stop growing or die. Oblimersen may increase the effectiveness of gemcitabine by making cancer cells more sensitive to the drug. This phase I trial is studying the side effects and best dose of oblimersen and gemcitabine in treating patients with metastatic or unresectable solid tumors or lymphoma