Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT05233709
Other study ID # OTf
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date April 25, 2022
Est. completion date May 20, 2022

Study information

Verified date June 2022
Source Swiss Federal Institute of Technology
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

OTf is a monomeric glycoprotein of 686 amino acid residues and, as a member of the transferrin family, folds into two homologous globular lobes, each containing a single reversible Fe3 + binding site located within the interdomain cleft of each lobe. A comparison of apo (metal-free) and holostructures shows that iron binding or release in OTf occurs via a mechanism that involves opening or closing domains. human lactoferrin, transferrin, and OTf share the same reversible iron binding mechanism. Lactoferrin (Lf) is a 77 kDa glycosylated protein highly concentrated in human and bovine milk and can exist in an apo (metal free) state or can bind two ferric ions with very high affinity (k = 1022 M-1) forming holo-Lf . It has been recently reported that the addition of apo-Lf to a test meal containing FeSO4 significantly increased (+56%) iron absorption in young infants [19]. Despite these positive results in infants, to our knowledge, the ability of Lf to improve iron absorption from FeSO4 has not yet been assessed in adult women. OTf and Lf will be tested as iron absorption enhancers by comparing the fractional iron absorption with that of FeSO4, the most widely used iron supplement. This study will provide information on how to improve iron absorption.In a randomized single-blind crossover study, the iron bioavailability is determined by means of stable iron isotope technology via the incorporation of stable isotopes from intrinsically labeled compounds into the erythrocytes 14 days after the study product.


Description:

Iron deficiency remains a major public health problem in both developed and developing countries. At present, iron deficiency is mostly combated with iron supplements in the form of iron salts, especially iron sulfate. Iron salts are absorbed via the nonhemic iron route via the DMT-1 receptor, the rate of absorption being 20% of the total iron content. The dietary supplement industry tries to counteract this problem and to supply the required amount of iron by increasing the iron concentration in the dietary supplements in order to compensate for the low absorption rate. However, the high dosage of iron leads to side effects. It would be more effective to maximize iron absorption rather than a high dose of iron. Chicken protein ovotransferrin (OTf) is recognized as an iron-binding protein and a member of the transferrin family. OTf has amino acid sequences that are identical to chicken serum transferrin and shows approximately 50% homology with mammalian transferrin and lactoferrin. Despite its iron binding properties and safety for human consumption, no studies have evaluated OTf as an enhancer of iron absorption in humans. OTf is a monomeric glycoprotein of 686 amino acid residues and, as a member of the transferrin family, folds into two homologous globular lobes, each containing a single reversible Fe3 + binding site located within the interdomain cleft of each lobe. A comparison of apo (metal-free) and holostructures shows that iron binding or release in OTf occurs via a mechanism that involves opening or closing domains. human lactoferrin, transferrin, and OTf share the same reversible iron binding mechanism. Lactoferrin (Lf) is a 77 kDa glycosylated protein highly concentrated in human and bovine milk and can exist in an apo (metal free) state or can bind two ferric ions with very high affinity (k = 1022 M-1) forming holo-Lf . There are various studies that show the iron bioavailability of intrinsically labeled holo-Lf and apo- Lf and FeSO4. Lf appears to be a good source of bioavailable iron in both infants and in adults. Whether this is due to iron absorption through the Lf receptor and/or due to iron released from Lf joining the common non-heme iron pool and being subsequently absorbed, remains uncertain. The high affinity of OTf for iron (∼1030 M-1) at pH 7.5 implies that in presence of apo-OTf, iron will be sequestered. Lf also possesses the ability to bind iron (binding constants of ∼1022-1024 M-1) and retain it at lower pH. This difference in iron binding capacity, however, is not sufficient to establish conclusive statements regarding the activity of OTf in iron absorption. It has been recently reported that the addition of apo-Lf to a test meal containing FeSO4 significantly increased (+56%) iron absorption in young infants. Despite these positive results in infants, to our knowledge, the ability of Lf to improve iron absorption from FeSO4 has not yet been assessed in adult women. Furthermore, despite its iron-binding properties and safety for human consumption, to the best of our knowledge, no studies have assessed OTf as an enhancer of iron absorption in humans. Therefore the use of OTf and Lf as iron absorption enhancers by comparing fractional iron absorption with that of FeSO4, the most commonly used iron supplement is investigated. This study will provide information regarding iron absorption enhancement, as well the behavior of OTf and Lf in adult women. OTf and Lf will be tested as iron absorption enhancers by comparing the fractional iron absorption with that of FeSO4, the most widely used iron supplement. This study will provide information on how to improve iron absorption.In a randomized single-blind crossover study, the iron bioavailability is determined by means of stable iron isotope technology via the incorporation of stable isotopes from intrinsically labeled compounds into the erythrocytes 14 days after the study product. Participants are given OTf, Lf and iron sulfate solutions. To quantify this, stable iron isotopes are used as marker substances. Stable isotopes exist in nature and in our body and there are no risks associated with their ingestion. No changes in the iron status of the subjects are expected during the study.35 women of childbearing age are being recruited for the study.


Recruitment information / eligibility

Status Completed
Enrollment 35
Est. completion date May 20, 2022
Est. primary completion date May 20, 2022
Accepts healthy volunteers Accepts Healthy Volunteers
Gender Female
Age group 18 Years to 45 Years
Eligibility Inclusion Criteria: - female aged between 18-45 years old; - SF <25 µg / L; - BMI 18.5-24.9 kg / m2; - weight <70 kg; - signed informed consent; - Able to communicate and comprehend English language. Exclusion Criteria: - Anemic (Hb <12 g / dL); - inflammation (CRP> 5 mg / L); - chronic digestive, renal and / or metabolic disease; - chronic medications (except for oral contraceptives); - use of vitamin, mineral and pre- and / or probiotic supplements in the previous 2 weeks and during the course of the study; - blood transfusion, blood donation or significant blood loss over the past 4 months; - difficulties with blood sampling; - antibiotic treatment in the previous 4 weeks before the start of the study and during the course of the study; - known hypersensitivity to egg; - pregnancy (tested in serum at screening) or intention to become pregnant during the course of the study; - lactation up to 6 weeks before study initiation;

Study Design


Related Conditions & MeSH terms


Intervention

Dietary Supplement:
FeSO4 + OTf
OTf (apo ovotransferrin) + FeSO4
FeSO4 + Lf
Lf (lactoferrin) + FeSO4
FeSO4
Ferrous sulfate

Locations

Country Name City State
Switzerland ETH Zurich, Laboratory of Human Nutrition Zurich

Sponsors (1)

Lead Sponsor Collaborator
Swiss Federal Institute of Technology

Country where clinical trial is conducted

Switzerland, 

Outcome

Type Measure Description Time frame Safety issue
Primary Fractional iron absorption The primary outcome is iron bioavailability (as measured by erythrocyte incorporation of the stable isotope labels) from the 2 different conditions in the standardized test meals. Day 19th of the study
Secondary Hemoglobin (Hb) Iron status marker Screening (-14,) day 1 and day 19th
Secondary Serum ferritin (SF) Iron status marker Screening (-14,) day 1 and day 19th
Secondary Serum transferrin receptor (sTfR), Iron status marker Screening (-14,) day 1 and day 19th
Secondary C-reactive protein (CRP) Inflammation status Screening (-14,) day 1 and day 19th
See also
  Status Clinical Trial Phase
Completed NCT04949165 - Bloodsafe Ghana- Iron and Nutritional Counseling Strategy Pilot Study N/A
Terminated NCT03218384 - Ferric Carboxymaltose to Improve Skeletal Muscle Metabolism in Heart Failure Patients With Functional Iron Deficiency Phase 2
Active, not recruiting NCT03516734 - Iron-fortified Lentils to Improve Iron (Fe) Status in Bangladesh N/A
Completed NCT03572010 - Stable Iron Isotope Method in HIV+ and HIV- Children N/A
Active, not recruiting NCT03703726 - Iron Absorption From Fortified Extruded Rice Using Different Extruding Temperatures. N/A
Recruiting NCT05217836 - Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
Not yet recruiting NCT05395468 - Diagnosis of Iron Deficiency by Artificial Intelligence Analysis of Eye Photography.
Withdrawn NCT03800446 - Validation of a Point-of-care Device Measuring Ferritin With Capillary Blood N/A
Not yet recruiting NCT03353662 - Sub Regional Micronutrient Survey in Ethiopia
Completed NCT03819530 - Child of Urban Poverty Iron Project (CUPIP) - A Pilot Study N/A
Recruiting NCT04144790 - Impact of Iron Supplementation Treatment on Brain Iron Concentrations
Completed NCT03957057 - Intravenous Iron Carboxymaltose, Isomaltoside and Oral Iron Sulphate for Postpartum Anemia Phase 3
Completed NCT03642223 - Central and Peripheral Adiposity and Iron Absorption N/A
Not yet recruiting NCT05407987 - Ferric Derisomaltose and Outcomes in the Recovery of Gynecologic Oncology: ERAS (Enhanced Recovery After Surgery) Phase 3
Withdrawn NCT03873584 - Improvement of Fatigue Symptoms in the Iron Deficiency Anemia With Iron Succinylate Therapy
Enrolling by invitation NCT03897673 - Optimizing Benefits While Reducing Risks of Iron in Malaria-endemic Areas N/A
Completed NCT04359368 - Characteristics of Patients With Hypersensitivity Reactions to Intravenous Iron Infusions
Active, not recruiting NCT04778072 - A Clinical Study on Adherence and Efficacy of Different Doses of Active Iron in Treatment Resistant Subjects N/A
Enrolling by invitation NCT05750940 - Oxidative Skeletal Muscle Metabolism in Chronic Heart Failure Patients With and Without Iron Deficiency
Recruiting NCT05126901 - Evaluate the Safety and Efficacy of Ferric Maltol Oral Suspension vs. Ferrous Sulfate Oral Liquid in Children and Adolescents Aged 2 to 17 Years With Iron-deficiency Anaemia, With a Single Arm Study in Infants Aged 1 Month to Less Than 2 Years Phase 3