Iron-deficiency Clinical Trial
Official title:
Evaluating the Effect of Polyphenols on the Iron Bioavailability From Iron Chlorophyllin in Young Women Using the Iron Stable Isotopic Method
Polyphenols present in tea are known to inhibit the absorption of non heme iron. The inhibiting effect of tea on non-heme iron absorption is attributed to the flavonoids present in tea. It is well known that Ferrous sulfate is not absorbed well in the presence of polyphenols. We would like to evaluate the effect of polyphenols on the newly developed compound, sodium iron chlorophyllin (SIC), which mimics the heme iron structure. Comparisons of fractional absorption of SIC and Ferrous Sulfate in the presence of polyphenols can help identify the performance of the compounds as vehicles for iron delivery in the presence of iron absorption inhibitors. In a single-blind randomized cross-over study using stable iron isotope technique, iron bioavailability from SIC delivered with an inhibitory matrix can therefore be determined when given along with black tea
New approaches to treat iron deficiency include developing novel iron compounds with possible iron absorption routes that increase iron bioavailability and reduce gastrointestinal side effects. Sodium iron chlorophyllin (SIC) is a water-soluble semisynthetic chlorophyll derivative where the magnesium in the porphyrin ring has been substituted by iron. Given the porphyrin ring heme-like structure of SIC, it may be an alternative delivery route for iron, suitable also for vegetarians and vegans. Yet, there are few studies investigating the use of SIC for this purpose. We recently completed the study entitled "Evaluation of iron bioavailability from iron chlorophyllin in young women using the iron stable isotopic method" based on previous in vitro and in vivo studies.. The study showed a 7% fractional iron absorption (FIA) from SIC when compared to the control compound, ferrous sulfate, which had a FIA of 30%, indicating a Relative Bioavailability of SIC of 20%. The study showed an inverse relationship between ferritin status and iron absorption from SIC in the study participants and an increase in the FIA in the presence of ascorbic acid. Both these findings lean towards the possibility that that the iron contributing to the FIA from SIC may be iron that was dissociated from the porphyrin ring of the chlorophyllin and entering the common non heme iron pool. This inverse relationship in ferritin and FIA is well known for ferrous sulfate. However, one cannot confirm the pathway taken up by SIC to deliver iron based on the previous study alone. Polyphenols present in tea are known to inhibit the absorption of non heme iron.The inhibiting effect of tea on non-heme iron absorption is attributed to the flavonoids present in tea. There are several types of tea flavonoids: monomers (catechin), dimers (theaflavin), and polymers (thearubigin). Black tea contains 10% flavanols, 25% catechins, 20% theaflavins and 45% thearubigins. The mechanism of iron absorption inhibition by tea is by formation of a complex of the flavonoids with iron. It is mainly the galloyl group in these phenolic compounds that specifically binds iron. A cup of black tea, brewed with 2.5 g tea leaves contains about 200 mg tea flavonoids . Heme iron absorption has also been shown to be inhibited by the presence of polyphenols but unclear to what extent. Thus, comparisons of fractional absorption of SIC and Ferrous Sulfate in the presence of polyphenols can help identify the performance of the compounds as vehicles for iron delivery in the presence of iron absorption inhibitors. In a single-blind randomized cross-over study using stable iron isotope technique, iron bioavailability from SIC delivered with an inhibitory matrix can therefore be determined when given along with black tea. SIC has been produced at the HNL with a 50% incorporation of iron into the chlorophyll. Our protocol is based on a Unilever patent that is no longer active, with in-house adaptation. The SIC has a neutral taste and will be presented as a dark green liquid, being the solution of SIC in water. If SIC, as hypothesized, behaves in a similar way to heme, then iron absorption inhibitors, such as the polyphenols, will not have an effect on the absorption of iron from SIC. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04949165 -
Bloodsafe Ghana- Iron and Nutritional Counseling Strategy Pilot Study
|
N/A | |
Terminated |
NCT03218384 -
Ferric Carboxymaltose to Improve Skeletal Muscle Metabolism in Heart Failure Patients With Functional Iron Deficiency
|
Phase 2 | |
Active, not recruiting |
NCT03516734 -
Iron-fortified Lentils to Improve Iron (Fe) Status in Bangladesh
|
N/A | |
Completed |
NCT03572010 -
Stable Iron Isotope Method in HIV+ and HIV- Children
|
N/A | |
Active, not recruiting |
NCT03703726 -
Iron Absorption From Fortified Extruded Rice Using Different Extruding Temperatures.
|
N/A | |
Recruiting |
NCT05217836 -
Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
|
||
Not yet recruiting |
NCT05395468 -
Diagnosis of Iron Deficiency by Artificial Intelligence Analysis of Eye Photography.
|
||
Withdrawn |
NCT03800446 -
Validation of a Point-of-care Device Measuring Ferritin With Capillary Blood
|
N/A | |
Not yet recruiting |
NCT03353662 -
Sub Regional Micronutrient Survey in Ethiopia
|
||
Completed |
NCT03819530 -
Child of Urban Poverty Iron Project (CUPIP) - A Pilot Study
|
N/A | |
Recruiting |
NCT04144790 -
Impact of Iron Supplementation Treatment on Brain Iron Concentrations
|
||
Completed |
NCT03957057 -
Intravenous Iron Carboxymaltose, Isomaltoside and Oral Iron Sulphate for Postpartum Anemia
|
Phase 3 | |
Completed |
NCT03642223 -
Central and Peripheral Adiposity and Iron Absorption
|
N/A | |
Not yet recruiting |
NCT05407987 -
Ferric Derisomaltose and Outcomes in the Recovery of Gynecologic Oncology: ERAS (Enhanced Recovery After Surgery)
|
Phase 3 | |
Withdrawn |
NCT03873584 -
Improvement of Fatigue Symptoms in the Iron Deficiency Anemia With Iron Succinylate Therapy
|
||
Enrolling by invitation |
NCT03897673 -
Optimizing Benefits While Reducing Risks of Iron in Malaria-endemic Areas
|
N/A | |
Completed |
NCT04359368 -
Characteristics of Patients With Hypersensitivity Reactions to Intravenous Iron Infusions
|
||
Active, not recruiting |
NCT04778072 -
A Clinical Study on Adherence and Efficacy of Different Doses of Active Iron in Treatment Resistant Subjects
|
N/A | |
Enrolling by invitation |
NCT05750940 -
Oxidative Skeletal Muscle Metabolism in Chronic Heart Failure Patients With and Without Iron Deficiency
|
||
Recruiting |
NCT05126901 -
Evaluate the Safety and Efficacy of Ferric Maltol Oral Suspension vs. Ferrous Sulfate Oral Liquid in Children and Adolescents Aged 2 to 17 Years With Iron-deficiency Anaemia, With a Single Arm Study in Infants Aged 1 Month to Less Than 2 Years
|
Phase 3 |