Iron-deficiency Clinical Trial
Official title:
The Effect of Single Dose Oral Galacto-oligosaccharides, Fructo-oligosaccharides and Acacia Gum on Iron Absorption From Single 100 mg Oral Iron Doses Given as Ferrous Fumarate in Women Living in Switzerland
Iron deficiency (ID) remains the most common global nutrient deficiency, with young women at high risk. Iron supplements are first line treatment for ID but absorption is often low. Dietary components that could increase iron absorption would be valuable. Prebiotics are among the potential enhancers of non-heme iron absorption. Galacto-oligosaccharides (GOS), fructo-oligosaccharides and acacia gum are safe and widely-used prebiotics. To our knowledge, no studies have assessed the effect of acacia gum on iron absorption in human or animal models. Evidence exists about the enhancement of iron absorption when given in combination with FOS in rats. However, an iron stable isotope study in infants reported that 7.5 g of GOS improved iron absorption from 5 mg iron from a mixture of ferrous fumarate and sodium iron EDTA. In a recent iron absorption study in adult women with low iron stores in our lab we found that 15 g of GOS given with FeFum (14 mg of elemental iron) acutely increased iron absorption when given with water (+61%) and a meal (+28%). For prevention of anemia among non-pregnant women, the WHO recommends intermittent (once, twice or three times a week) oral iron supplementation with 60 mg of elemental iron. This has been shown to be effective, safe and acceptable for improving hemoglobin concentrations in women and lowering their risk of anemia. If GOS improves iron absorption from a higher dose of iron, and if FOS and acacia gum might also enhance iron absorption from FeFum is unclear. With this study we therefore aim to investigate if consumption of a single oral dose of 15 g GOS, FOS or acacia gum increase iron absorption from single 100 mg oral iron doses, a common amount found in supplements on the market for treatment of iron deficiency, given as ferrous fumarate in otherwise healthy iron depleted women.
Prebiotics are defined as "microbial food supplements that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacterial species already resident in the colon". Moreover, prebiotics are potential enhancers of iron absorption, via several mechanisms: a) increasing gastric residence time allowing for greater iron dissolution; b) stimulating enterocyte gene expression of proteins involved in iron absorption; c) stimulating enterocyte proliferation providing a greater surface for iron absorption; and d) stimulating SCFA production by gut commensal bacteria, decreasing distal gut luminal pH and increasing iron dissolution. Galacto-oligosaccharides (GOS), a safe and widely-used prebiotic, are a mixture of glucose- and galactose-based di- and oligosaccharides of varying structure and may be more selectively utilized by Bifidobacterium spp. than other prebiotics. Fructo-oligosaccharides (FOS) are composed by 4 to 9 units of fructose alone or in combination with one unit of glucose. FOS are widely used as food ingredients/nutritional supplements due to their bifidogenic properties. Acacia gum is composed by highly branched galactan polymers with galactose and/or arabinose side chains, possibly terminated by rhamnose or glucuronic acid residues. Both in-vitro and in-vivo studies have shown that acacia gum supports bifidobacterial growth and short-chain fatty acids (SCFA) production in the large intestine. GOS and FOS have received GRAS status in the USA. Acacia gum is extensively used in the food industry for various functions (emulsification, encapsulation, stabilization, etc.). It is affirmed as "GRAS" for use in various food items. Acacia gum in human subjects is well tolerated up to 50 g/day. The European Food Safety Authority stated that there is no safety concern for the use of Acacia Gum as a food supplement. To our knowledge, no studies have assessed the effect of acacia gum on iron absorption in human or animal models. Evidence exists about the enhancement of iron absorption when given in combination with FOS in rats. In humans, studies so far have failed in showing an effect of FOS on iron absorption. However, an iron stable isotope study in infants reported that 7.5 g of GOS improved iron absorption from 5 mg iron from a mixture of ferrous fumarate and sodium iron EDTA. Moreover, in a recent iron absorption study in adult women with low iron stores in our lab we found that 15 g of GOS given with FeFum (14 mg of elemental iron) acutely increased iron absorption when given with water (+61%) and a meal (+28%). In another study in our lab (unpublished data) we found that 7 g of GOS given with FeFum (14 mg of elemental iron) acutely increased iron absorption when given with water (+26%), in iron depleted women. These effects were found to be iron compound specific and could not be shown for ferrous sulfate, the iron compound used in the existing human studies with FOS. For prevention of anemia among non-pregnant women, the WHO recommends intermittent (once, twice or three times a week) oral iron supplementation with 60 mg of elemental iron. This has been shown to be effective, safe and acceptable for improving hemoglobin concentrations in women and lowering their risk of anemia. If GOS improves iron absorption from a higher dose of iron, and if FOS and acacia gum might also enhance iron absorption from FeFum is unclear. With this study we therefore aim to investigate if consumption of a single oral dose of 15 g GOS, FOS or acacia gum increase iron absorption from single 100 mg oral iron doses, a common amount found in supplements on the market for treatment of iron deficiency, given as ferrous fumarate in otherwise healthy iron depleted women. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04949165 -
Bloodsafe Ghana- Iron and Nutritional Counseling Strategy Pilot Study
|
N/A | |
Terminated |
NCT03218384 -
Ferric Carboxymaltose to Improve Skeletal Muscle Metabolism in Heart Failure Patients With Functional Iron Deficiency
|
Phase 2 | |
Active, not recruiting |
NCT03516734 -
Iron-fortified Lentils to Improve Iron (Fe) Status in Bangladesh
|
N/A | |
Completed |
NCT03572010 -
Stable Iron Isotope Method in HIV+ and HIV- Children
|
N/A | |
Active, not recruiting |
NCT03703726 -
Iron Absorption From Fortified Extruded Rice Using Different Extruding Temperatures.
|
N/A | |
Recruiting |
NCT05217836 -
Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
|
||
Not yet recruiting |
NCT05395468 -
Diagnosis of Iron Deficiency by Artificial Intelligence Analysis of Eye Photography.
|
||
Withdrawn |
NCT03800446 -
Validation of a Point-of-care Device Measuring Ferritin With Capillary Blood
|
N/A | |
Not yet recruiting |
NCT03353662 -
Sub Regional Micronutrient Survey in Ethiopia
|
||
Completed |
NCT03819530 -
Child of Urban Poverty Iron Project (CUPIP) - A Pilot Study
|
N/A | |
Recruiting |
NCT04144790 -
Impact of Iron Supplementation Treatment on Brain Iron Concentrations
|
||
Completed |
NCT03957057 -
Intravenous Iron Carboxymaltose, Isomaltoside and Oral Iron Sulphate for Postpartum Anemia
|
Phase 3 | |
Completed |
NCT03642223 -
Central and Peripheral Adiposity and Iron Absorption
|
N/A | |
Not yet recruiting |
NCT05407987 -
Ferric Derisomaltose and Outcomes in the Recovery of Gynecologic Oncology: ERAS (Enhanced Recovery After Surgery)
|
Phase 3 | |
Withdrawn |
NCT03873584 -
Improvement of Fatigue Symptoms in the Iron Deficiency Anemia With Iron Succinylate Therapy
|
||
Enrolling by invitation |
NCT03897673 -
Optimizing Benefits While Reducing Risks of Iron in Malaria-endemic Areas
|
N/A | |
Completed |
NCT04359368 -
Characteristics of Patients With Hypersensitivity Reactions to Intravenous Iron Infusions
|
||
Active, not recruiting |
NCT04778072 -
A Clinical Study on Adherence and Efficacy of Different Doses of Active Iron in Treatment Resistant Subjects
|
N/A | |
Enrolling by invitation |
NCT05750940 -
Oxidative Skeletal Muscle Metabolism in Chronic Heart Failure Patients With and Without Iron Deficiency
|
||
Recruiting |
NCT05126901 -
Evaluate the Safety and Efficacy of Ferric Maltol Oral Suspension vs. Ferrous Sulfate Oral Liquid in Children and Adolescents Aged 2 to 17 Years With Iron-deficiency Anaemia, With a Single Arm Study in Infants Aged 1 Month to Less Than 2 Years
|
Phase 3 |