View clinical trials related to Hematologic Neoplasms.
Filter by:This study seeks to examine treatment therapy that will reduced regimen-related toxicity and relapse while promoting rapid immune reconstitution with limited serious graft-versus-host-disease (GVHD) and also improve disease-free survival and quality of life. The investigators propose to evaluate the safety and efficacy of selective naive T-cell depleted (by TCRɑβ and CD45RA depletion, respectively) haploidentical hematopoietic cell transplant (HCT) following reduced intensity conditioning regimen that avoids radiation in patients with hematologic malignancies that have relapsed or are refractory following prior allogeneic transplantation. PRIMARY OBJECTIVE: - To estimate engraftment by day +30 post-transplant in patients who receive TCRɑβ-depleted and CD45RA-depleted haploidentical donor progenitor cell transplantation following reduced intensity conditioning regimen without radiation. SECONDARY OBJECTIVES: - Assess the safety and feasibility of the addition of Blinatumomab in the early post-engraftment period in patients with CD19+ malignancy. - Estimate the incidence of malignant relapse, event-free survival, and overall survival at one-year post-transplantation. - Estimate incidence and severity of acute and chronic (GVHD). - Estimate the rate of transplant related mortality (TRM) in the first 100 days after transplantation.
This screening study is intended for men and women ≥ 18 to ≤ 75 years of age who have advanced solid or hematologic malignancy. The study will assess a subject's human leukocyte antigen (HLA) subtype and tumor antigen expression profile. Based on the results, it will be determined if a subject is eligible to be considered for Adaptimmune sponsored clinical trials testing the safety and efficacy of genetically changed T cells targeting specific tumor antigens. No treatment intervention will occur as part of this screening study. Upon enrollment, subjects will be required to provide a blood sample for HLA subtype analysis. If the results of the analysis match the HLA-A subtypes noted in the inclusion criteria and do not express the HLA subtypes that are exclusionary for the available interventional clinical trial(s), then the subject will be required to provide either an archival tumor specimen or fresh tumor tissue biopsy. The tumor specimen will be screened at a central laboratory for the expression (protein or gene) of multiple antigens which may include, but are not limited to MAGE-A4. Based upon the results of these diagnostic analyses, if eligible, subjects will be referred to an appropriate available interventional clinical trial(s) at the discretion of the Investigator. Following screening, tumor samples will be retained by Adaptimmune for the purpose of developing and validating in vitro diagnostic (IVD) assay(s) for antigen expression profiling which is required for regulatory approval of a new therapeutic product indication.
This is a biology driven, monocentric study designed to identify actionable molecular alterations in cancer patients with advanced disease. In this trial, high throughput analysis will be carried out using next generation sequencing, and immunological profiling. Patients included in the BIP study and for whom a targetable genomic alteration had been identified might be subsequently included in an early phase trials running at Institut Bergonie or another French hospital.
This phase I trial studies the safety of transplantation with a haploidentical donor peripheral blood stem cell graft depleted of TCRαβ+ cells and CD19+ cells in conjunction with the immunomodulating drug, Zoledronate, given in the post-transplant period to treat pediatric patients with relapsed or refractory hematologic malignancies or high risk solid tumors.
To collect and analyze specimens that will correlate with clinical outcomes such as acute and late toxicities, quality of life, local control, and survival of patients treated with photon/proton therapy.
This phase I trial studies the side effects and the best dose of intensity modulated total marrow irradiation (IMTMI) when given together with fludarabine phosphate and melphalan in treating patients with cancers of the blood (hematologic) that have returned after a period of improvement (relapsed) undergoing a second donor stem cell transplant. IMTMI is a type of radiation therapy to the bone marrow that may be less toxic and may also reduce the chances of cancer to return. Giving fludarabine phosphate, melphalan, and IMTMI before a donor stem cell transplant may help stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.
This is a single arm pilot study for patients using α/β T cell-depleted peripheral Stem Cell Transplantation (PSCT) in with alternative donor sources with hematologic malignancies receiving alternative donor (unrelated or partially matched related) mobilized peripheral stem cells (PSCs) using the CliniMACS system for T cell depletion plus CD19+ B cell depletion to determine efficacy as determined by engraftment and graft versus host disease (GVHD), and one year leukemia free survival.
Blood cancers occur when the molecules that control normal cell growth are damaged. Many of these changes can be detected by directly examining parts of the cancer or cells in blood. Several alterations that occur repeatedly in certain types of blood cancers have already been identified, and these discoveries have led to the development of new drugs that target those alterations. More remain to be discovered. Some of these abnormalities include alterations in genes. Genes are the part of cells that contain the instructions which tell the investigators bodies how to grow and work, and determine physical characteristics such as hair and eye color. Genes are composed of DNA letters that spell out these instructions. Studies of the DNA molecules that make up the genes are called "molecular" analyses. Molecular analyses are ways of reading the DNA letters to identify errors in genes that may contribute to an increased risk of cancer or to the behavior of the cancer cells. Some changes in genes occur only in cancer cells. Others occur in the genes that are passed from parent to child. This research study will examine both kinds of genes. The best way to find these genes is to study large numbers of people. The investigators expect that as many 1000 individuals will enroll in this study. This research study is trying to help doctors and scientists understand why cancer occurs and to develop ways to better treat and prevent it. To participate in this study the participant must have cancer now, had it in the past, or are at risk of developing cancer. The participant will not undergo tests or procedures that are not required as part of their routine clinical care. The investigators will ask the participant to provide an additional sample from tissue that is obtained for their clinical care including blood, bone marrow, or tissue sample. The investigators will also ask for a gentle scrape of the inside of their cheek, mouthwash or a skin sample to obtain their germline DNA
This Phase I dose-escalation trial is designed to evaluate the safety of administering rapidly -generated tumor multi-antigen associated -specific cytotoxic T lymphocytes, to HSCT recipients (Arm A) or future HSCT recipients (Arm B) for the treatment of high-risk or relapsed or refractory hematopoietic malignancies. In addition to safety, this study will also evaluate if event-free survival (EFS) is improved with TAA-T administration at six months after HSCT for patients with high risk AML and MDS (Arm C).
Prospective Cohort Study of clinical and laboratory data of patients with hemopathy.