Healthy Clinical Trial
— Senso@WorkOfficial title:
Usability and Feasibility Trial of an Exergame-based Occupational Health Intervention at Two Swiss Workforce Companies
Verified date | October 2023 |
Source | Swiss Federal Institute of Technology |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
High levels of sustained sedentary time in office workers are associated with non-communicable diseases as e.g. cardio-vascular diseases or diabetes. Moreover, recent evidence has further suggested a relationship between prolonged sitting periods and adverse mental health outcomes. Based on these facts, various types of occupational health-related interventions have already been undertaken, thereby mostly focusing on physical aspects. However, a promising intervention option that has only rarely been investigated in this context, are so-called exergames, which allow a combined physical and cognitive training in a motivating and time-efficient manner. This pilot trial aims to determine the usability and feasibility of an exergame-based intervention targeting occupational health aspects, whilst secondarily exploring potential effects on physical and cognitive functions. The study is planned for healthy (self-reported) office workers, aged between 18 and 65 years. Participants are asked to perform a minimum of 18 training sessions with a duration of 10-20 minutes during a period of six weeks. The design is planned as a two-arm crossover trial, where participants will randomly get allocated to a group, and either start with the training period or the control period (no training). After having completed the six-week training period, participants will evaluate the usability and report their experience with the exergame device. In terms of evaluation of the feasibility, adherence and attrition rates will be calculated at the end of the study. Before, after six weeks, as well as after 12 weeks, cognitive and physical assessments will be performed and questionnaires on behalf of stress experience and management will be elicited. The findings of this pilot trial will help to explore the possibilities of designing occupational health interventions by the implementation of motor-cognitive exergames. In addition, this trial offers the possibility of exploratorily analyzing the effects of exergame training in office-workers.
Status | Completed |
Enrollment | 22 |
Est. completion date | September 30, 2021 |
Est. primary completion date | September 30, 2021 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 65 Years |
Eligibility | Inclusion Criteria: - Provide a signed informed consent - Aged between 18 and 65 years - Present at min. 2 workdays a week Exclusion Criteria: - Severe sensory impairments (mainly visual, auditory, color blindness) - Planned absence from work for >2 week - Acute or unstable chronic diseases (e.g. cardiac infarction during the last year, uncontrolled high blood pressure or cardiovascular disease, uncontrolled diabetes) - Rapidly progressing or terminal illnesses - Chronic respiratory disease - Condition or therapy that weakens the immune system - Cancer - Serious obesity > 40kg/m2 |
Country | Name | City | State |
---|---|---|---|
Switzerland | Baryon AG | Zurich | ZH |
Lead Sponsor | Collaborator |
---|---|
Swiss Federal Institute of Technology |
Switzerland,
Aegerter AM, Deforth M, Johnston V, Ernst MJ, Volken T, Luomajoki H, Brunner B, Dratva J, Sjogaard G, Elfering A, Melloh M; NEXpro collaboration group. On-site multi-component intervention to improve productivity and reduce the economic and personal burden of neck pain in Swiss office-workers (NEXpro): protocol for a cluster-randomized controlled trial. BMC Musculoskelet Disord. 2020 Jun 19;21(1):391. doi: 10.1186/s12891-020-03388-x. Erratum In: BMC Musculoskelet Disord. 2020 Jul 25;21(1):488. Dressler, Holger [corrected to Dressel, Holger]. — View Citation
Aldana SG. Financial impact of health promotion programs: a comprehensive review of the literature. Am J Health Promot. 2001 May-Jun;15(5):296-320. doi: 10.4278/0890-1171-15.5.296. — View Citation
Bhammar DM, Sawyer BJ, Tucker WJ, Gaesser GA. Breaks in Sitting Time: Effects on Continuously Monitored Glucose and Blood Pressure. Med Sci Sports Exerc. 2017 Oct;49(10):2119-2130. doi: 10.1249/MSS.0000000000001315. — View Citation
Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, Alter DA. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015 Jan 20;162(2):123-32. doi: 10.7326/M14-1651. Erratum In: Ann Intern Med. 2015 Sep 1;163(5):400. — View Citation
Borsci S, Federici S, Lauriola M. On the dimensionality of the System Usability Scale: a test of alternative measurement models. Cogn Process. 2009 Aug;10(3):193-7. doi: 10.1007/s10339-009-0268-9. Epub 2009 Jun 30. — View Citation
Buckley JP, Hedge A, Yates T, Copeland RJ, Loosemore M, Hamer M, Bradley G, Dunstan DW. The sedentary office: an expert statement on the growing case for change towards better health and productivity. Br J Sports Med. 2015 Nov;49(21):1357-62. doi: 10.1136/bjsports-2015-094618. Epub 2015 Jun 1. — View Citation
Chen C, Dieterich AV, Koh JJE, Akksilp K, Tong EH, Budtarad N, Muller AM, Anothaisintawee T, Tai BC, Rattanavipapong W, Isaranuwatchai W, Rouyard T, Nakamura R, Muller-Riemenschneider F, Teerawattananon Y. The physical activity at work (PAW) study protocol: a cluster randomised trial of a multicomponent short-break intervention to reduce sitting time and increase physical activity among office workers in Thailand. BMC Public Health. 2020 Sep 1;20(1):1332. doi: 10.1186/s12889-020-09427-5. — View Citation
Davis KG, Kotowski SE. Postural variability: an effective way to reduce musculoskeletal discomfort in office work. Hum Factors. 2014 Nov;56(7):1249-61. doi: 10.1177/0018720814528003. — View Citation
Dempsey PC, Sacre JW, Larsen RN, Straznicky NE, Sethi P, Cohen ND, Cerin E, Lambert GW, Owen N, Kingwell BA, Dunstan DW. Interrupting prolonged sitting with brief bouts of light walking or simple resistance activities reduces resting blood pressure and plasma noradrenaline in type 2 diabetes. J Hypertens. 2016 Dec;34(12):2376-2382. doi: 10.1097/HJH.0000000000001101. — View Citation
Elo AL, Leppanen A, Jahkola A. Validity of a single-item measure of stress symptoms. Scand J Work Environ Health. 2003 Dec;29(6):444-51. doi: 10.5271/sjweh.752. — View Citation
Falck RS, Davis JC, Liu-Ambrose T. What is the association between sedentary behaviour and cognitive function? A systematic review. Br J Sports Med. 2017 May;51(10):800-811. doi: 10.1136/bjsports-2015-095551. Epub 2016 May 6. — View Citation
Fang Q, Ghanouni P, Anderson SE, Touchett H, Shirley R, Fang F, Fang C. Effects of Exergaming on Balance of Healthy Older Adults: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Games Health J. 2020 Feb;9(1):11-23. doi: 10.1089/g4h.2019.0016. Epub 2019 Dec 3. — View Citation
Gao Y, Nevala N, Cronin NJ, Finni T. Effects of environmental intervention on sedentary time, musculoskeletal comfort and work ability in office workers. Eur J Sport Sci. 2016 Sep;16(6):747-54. doi: 10.1080/17461391.2015.1106590. Epub 2015 Nov 3. — View Citation
Glazer NL, Lyass A, Esliger DW, Blease SJ, Freedson PS, Massaro JM, Murabito JM, Vasan RS. Sustained and shorter bouts of physical activity are related to cardiovascular health. Med Sci Sports Exerc. 2013 Jan;45(1):109-15. doi: 10.1249/MSS.0b013e31826beae5. — View Citation
Healy GN, Eakin EG, Lamontagne AD, Owen N, Winkler EA, Wiesner G, Gunning L, Neuhaus M, Lawler S, Fjeldsoe BS, Dunstan DW. Reducing sitting time in office workers: short-term efficacy of a multicomponent intervention. Prev Med. 2013 Jul;57(1):43-8. doi: 10.1016/j.ypmed.2013.04.004. Epub 2013 Apr 15. — View Citation
Ingadottir B, Jaarsma T, Klompstra L, Aidemark J, Askenas L, Bahat Y, Ben Gal O, Berglund A, Berglund E, Hochsmann C, Plotnik M, Trappenburg JC, Schmidt-Trucksass A, Stromberg A. Let the games begin: Serious games in prevention and rehabilitation to improve outcomes in patients with cardiovascular disease. Eur J Cardiovasc Nurs. 2020 Oct;19(7):558-560. doi: 10.1177/1474515120934058. Epub 2020 Jun 13. No abstract available. — View Citation
Klompstra L, Jaarsma T, Stromberg A. Exergaming to increase the exercise capacity and daily physical activity in heart failure patients: a pilot study. BMC Geriatr. 2014 Nov 18;14:119. doi: 10.1186/1471-2318-14-119. — View Citation
Knols RH, Fischer N, Kohlbrenner D, Manettas A, de Bruin ED. Replicability of Physical Exercise Interventions in Lung Transplant Recipients; A Systematic Review. Front Physiol. 2018 Jul 20;9:946. doi: 10.3389/fphys.2018.00946. eCollection 2018. — View Citation
Konstantinidis EI, Billis AS, Mouzakidis CA, Zilidou VI, Antoniou PE, Bamidis PD. Design, Implementation, and Wide Pilot Deployment of FitForAll: An Easy to use Exergaming Platform Improving Physical Fitness and Life Quality of Senior Citizens. IEEE J Biomed Health Inform. 2016 Jan;20(1):189-200. doi: 10.1109/JBHI.2014.2378814. — View Citation
Li J, Theng YL, Cheong WL, Hoo YF, Ngo MD. Exergames for the corporate wellness program in Singapore: An investigation of employees' acceptance via watching Kinect video. Digit Health. 2016 Jun 17;2:2055207616654578. doi: 10.1177/2055207616654578. eCollection 2016 Jan-Dec. — View Citation
Meekes W, Stanmore EK. Motivational Determinants of Exergame Participation for Older People in Assisted Living Facilities: Mixed-Methods Study. J Med Internet Res. 2017 Jul 6;19(7):e238. doi: 10.2196/jmir.6841. — View Citation
Moore CG, Carter RE, Nietert PJ, Stewart PW. Recommendations for planning pilot studies in clinical and translational research. Clin Transl Sci. 2011 Oct;4(5):332-7. doi: 10.1111/j.1752-8062.2011.00347.x. — View Citation
Potthoff T, de Bruin ED, Rosser S, Humphreys BK, Wirth B. A systematic review on quantifiable physical risk factors for non-specific adolescent low back pain. J Pediatr Rehabil Med. 2018;11(2):79-94. doi: 10.3233/PRM-170526. — View Citation
Rebsamen S, Knols RH, Pfister PB, de Bruin ED. Exergame-Driven High-Intensity Interval Training in Untrained Community Dwelling Older Adults: A Formative One Group Quasi- Experimental Feasibility Trial. Front Physiol. 2019 Aug 7;10:1019. doi: 10.3389/fphys.2019.01019. eCollection 2019. — View Citation
Schellewald V, Kleinert J, Ellegast R. Effects of two types of dynamic office workstations (DOWs) used at two intensities on cognitive performance and office work in tasks with various complexity. Ergonomics. 2021 Jun;64(6):806-818. doi: 10.1080/00140139.2020.1862308. Epub 2020 Dec 23. — View Citation
Schoene D, Valenzuela T, Toson B, Delbaere K, Severino C, Garcia J, Davies TA, Russell F, Smith ST, Lord SR. Interactive Cognitive-Motor Step Training Improves Cognitive Risk Factors of Falling in Older Adults - A Randomized Controlled Trial. PLoS One. 2015 Dec 16;10(12):e0145161. doi: 10.1371/journal.pone.0145161. eCollection 2015. — View Citation
Shikiar R, Halpern MT, Rentz AM, Khan ZM. Development of the Health and Work Questionnaire (HWQ): an instrument for assessing workplace productivity in relation to worker health. Work. 2004;22(3):219-29. — View Citation
Shrestha N, Kukkonen-Harjula KT, Verbeek JH, Ijaz S, Hermans V, Pedisic Z. Workplace interventions for reducing sitting at work. Cochrane Database Syst Rev. 2018 Jun 20;6(6):CD010912. doi: 10.1002/14651858.CD010912.pub4. — View Citation
Stanmore EK, Mavroeidi A, de Jong LD, Skelton DA, Sutton CJ, Benedetto V, Munford LA, Meekes W, Bell V, Todd C. The effectiveness and cost-effectiveness of strength and balance Exergames to reduce falls risk for people aged 55 years and older in UK assisted living facilities: a multi-centre, cluster randomised controlled trial. BMC Med. 2019 Feb 28;17(1):49. doi: 10.1186/s12916-019-1278-9. — View Citation
Teychenne M, Ball K, Salmon J. Sedentary behavior and depression among adults: a review. Int J Behav Med. 2010 Dec;17(4):246-54. doi: 10.1007/s12529-010-9075-z. — View Citation
Thosar SS, Bielko SL, Mather KJ, Johnston JD, Wallace JP. Effect of prolonged sitting and breaks in sitting time on endothelial function. Med Sci Sports Exerc. 2015 Apr;47(4):843-9. doi: 10.1249/MSS.0000000000000479. — View Citation
van het Reve E, de Bruin ED. Strength-balance supplemented with computerized cognitive training to improve dual task gait and divided attention in older adults: a multicenter randomized-controlled trial. BMC Geriatr. 2014 Dec 15;14:134. doi: 10.1186/1471-2318-14-134. — View Citation
van Tulder M, Furlan A, Bombardier C, Bouter L; Editorial Board of the Cochrane Collaboration Back Review Group. Updated method guidelines for systematic reviews in the cochrane collaboration back review group. Spine (Phila Pa 1976). 2003 Jun 15;28(12):1290-9. doi: 10.1097/01.BRS.0000065484.95996.AF. — View Citation
Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, Khunti K, Yates T, Biddle SJ. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012 Nov;55(11):2895-905. doi: 10.1007/s00125-012-2677-z. Epub 2012 Aug 14. Erratum In: Diabetologia. 2013 Apr;56(4):942-3. — View Citation
Zheng L, Li G, Wang X, Yin H, Jia Y, Leng M, Li H, Chen L. Effect of exergames on physical outcomes in frail elderly: a systematic review. Aging Clin Exp Res. 2020 Nov;32(11):2187-2200. doi: 10.1007/s40520-019-01344-x. Epub 2019 Sep 13. — View Citation
* Note: There are 35 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | System Usability | Score at the System Usability Scale (SUS) (for all single items and the in total) after receiving the Exergame Training for 6 weeks Higher scores imply better system usability | 6 weeks | |
Primary | Technology Acceptance | Score at the Tailored Technology Acceptance Model (TAM) (for all single items and the in total) items after receiving the Exergame Training for 6 weeks Higher scores imply higher acceptance | 6 weeks | |
Primary | Usability | Score at the Tailored usability questionnaire items after receiving the Exergame Training for 6 weeks | 6 weeks | |
Primary | Situational Motivation Scale (SIMS) | The SIMS is a 16-item questionnaire that measures the aspects of intrinsic motivation, identified regulation, external regulation and amotivation. This brief and versatile self-report measure asks participants to rate their agree- or disagreement to predefined statements on a 7-point Likert scale. | 6 weeks | |
Primary | Adherence Rate | Duration of attended exergame training sessions in relation to the duration of the recommended (2 x 10min x 6 weeks=120 minutes) sessions (in %). | 6 weeks | |
Primary | Attrition | Number of participants that dropped out of the study during the exergame training intervention period. | 6 weeks | |
Primary | Recruitment Rate | Number of participating employees in relation to the total number of employees working at the company and fulfilling the inclusion/exclusion criteria at the time the study took place. | 6 weeks | |
Secondary | Changes in Mental Flexibility after 6 weeks of Exergame Training (from T1 to T2 (for G1) and from T2 to T3 (for G2) | The Flexibility Test measures figural cognitive flexibility (the ability to switch between different concepts). Participants need to react as fast as possible to the presented round figure, then to the angular figure, then to the round figure and so on. Reaction times (in ms) were calculated. | 6 weeks of Exergame Training | |
Secondary | Changes in Selective Attention after 6 weeks of Exergame Training (from T1 to T2 (for G1) and from T2 to T3 (for G2) | The Arrow Test is used to measure selective attention and inhibition. A small grey dot in the middle of the screen needs to be fixated. On the right and left side of this grey dot, arrows appear, that point either to the right or left, in a randomized order. Steps then need to be performed as fast as possible in the direction where the arrowheads are pointing (and not the side where they are appearing). Reaction times (in ms) were calculated. | 6 weeks of Exergame Training | |
Secondary | Changes in Inhibition after 6 weeks of Exergame Training (from T1 to T2 (for G1) and from T2 to T3 (for G2) | The Stroop Test measures inhibition in a combination of four subtests. Four colored circles are always presented on the screen ( front=yellow, left= red, back=green, right= blue).
During subtest (1), a square is presented in the middle, whereafter the circle with the matching color needs to be selected as fast as possible. During subtest (2), a word is presented in the middle, whereafter, the circle with the matching color needs to be selected as fast as possible. During subtest (3), word is presented in the middle, whereafter the circle needs to be selected, whose color matches the color of the letters. During subtest (4), a word appears in the middle, randomly either framed or not. If the word appears framed, the circle needs to be selected that matches the described color. If the word is unframed, the circle needs to be selected in the color of the word letters. Reaction times (in ms) were calculated in all subtests. |
6 weeks of Exergame Training | |
Secondary | Changes in postural sway after 6 weeks of Exergame Training (from T1 to T2 (for G1) and from T2 to T3 (for G2) | Sway Test (Senso): The Sway Test is based on the widely used Romberg Test and assesses postural control. Participants will stand on the plate with their feet shoulder-width apart and their arms extended at the front, while being standing as still as possible for 30 seconds. The test will be repeated in a second condition with closed eyes, to assess the sensory contribution to the postural control as well as in a third condition on a soft mat to assess the postural control in a more challenging environment. During these three tasks, the Center of Pressure displacement (path length in mm) is measured to evaluate participants postural control. | 6 weeks of Exergame Training |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06052553 -
A Study of TopSpin360 Training Device
|
N/A | |
Completed |
NCT05511077 -
Biomarkers of Oat Product Intake: The BiOAT Marker Study
|
N/A | |
Recruiting |
NCT04632485 -
Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
|
||
Completed |
NCT05931237 -
Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults
|
N/A | |
Terminated |
NCT04556032 -
Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women
|
N/A | |
Completed |
NCT04527718 -
Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers
|
Phase 1 | |
Completed |
NCT04065295 -
A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225
|
Phase 1 | |
Completed |
NCT04107441 -
AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects
|
Phase 1 | |
Completed |
NCT04998695 -
Health Effects of Consuming Olive Pomace Oil
|
N/A | |
Completed |
NCT01442831 -
Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects
|
Phase 1 | |
Terminated |
NCT05934942 -
A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood
|
Phase 1 | |
Recruiting |
NCT05525845 -
Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI
|
N/A | |
Completed |
NCT05515328 -
A Study in Healthy Men to Test How BI 685509 is Processed in the Body
|
Phase 1 | |
Completed |
NCT04967157 -
Cognitive Effects of Citicoline on Attention in Healthy Men and Women
|
N/A | |
Completed |
NCT05030857 -
Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects
|
Phase 1 | |
Recruiting |
NCT04714294 -
Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers
|
Phase 1 | |
Recruiting |
NCT04494269 -
A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls
|
Phase 1 | |
Completed |
NCT04539756 -
Writing Activities and Emotions
|
N/A | |
Recruiting |
NCT04098510 -
Concentration of MitoQ in Human Skeletal Muscle
|
N/A | |
Completed |
NCT03308110 -
Bioavailability and Food Effect Study of Two Formulations of PF-06650833
|
Phase 1 |