Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT06108388
Other study ID # Pro00074548
Secondary ID
Status Not yet recruiting
Phase
First received
Last updated
Start date November 2023
Est. completion date June 2026

Study information

Verified date November 2023
Source Canadian Medical and Surgical Knowledge Translation Research Group
Contact Fallon Dennis, BMSc
Phone 7057720021
Email fallon.dennis@mail.utoronto.ca
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

FIERCE is an observational cross-sectional study. Approximately 90 individuals living with type 2 diabetes (T2D) and/or individuals living without diabetes will be randomized (2:1). The primary objective of this trial is to determine if there are differences in the content and function of circulating vascular regenerative (VR) progenitor cell subsets isolated from individuals living with T2D versus individuals not living with T2D. The main question this study aims to answer is: Does T2D compromise or enhance VR cell functionality? Each participant will be asked to provide a single blood sample. Blood samples will be processed to enumerate the number of vessel-repairing cells and determine the functionality of the different subtypes of vessel-repairing cells.


Description:

Type 2 diabetes (T2D) is a significant and prevalent global health concern. Individuals diagnosed with T2D are at an elevated risk of developing atherosclerotic cardiovascular (CV) disease, a leading cause of global morbidity and mortality. Blood vessel homeostasis plays a central role in the status of CV health. Circulating vascular regenerative (VR) progenitor cells, which mediate the endogenous processes of angiogenesis, vasculogenesis, and arteriogenesis, are critical in orchestrating vessel repair. In T2D, chronic hyperglycemia and concomitant oxidative stress create a maladaptive environment that impairs vessel repair. T2D can lead to a chronic state known as vascular regenerative cell exhaustion (VRCE), characterized by the depletion of, and dysfunction in, circulating VR progenitor cells. The available data indicate that VRCE associated with T2D can lead to VR cell dysfunction and compromised vascular repair. The investigators have developed a multi-parametric flow cytometry assay to measure VR progenitor cell content in blood samples. This assay utilizes the cytosolic detoxification enzyme aldehyde dehydrogenase (ALDH), which is highly expressed in progenitor cells from hematopoietic, endothelial, and mesenchymal stromal cell lineages. This enzyme protects progenitor cells from oxidative damage that is driven by reactive oxygen species. ALDH activity is reduced by up to 100-fold as progenitor cells differentiate towards more expendable effector cells. As such, the investigators identify cells with high or low ALDH activity in combination with cell surface markers to distinguish progenitor cell subsets (ALDHhi) from more differentiated progeny (ALDHlow). Used in conjunction with 'side scatter' (SSC), a parameter that correlates with the granularity or complexity of a cell, this assay can distinguish between and quantify ALDHhiSSClow hematopoietic/endothelial precursor cells, ALDHhiSSCmid monocytes, and ALDHhiSSChi granulocyte precursors. Previously, bone marrow-derived ALDHhiSSClow cells were shown to co-express the primitive cell markers CD34 and CD133 and exhibit multipotent hematopoietic colony-forming ability in vitro. In the immunodeficient NOD/SCID mouse model of hindlimb ischemia, transplantation of ALDHhiSSClow cells into the ischemic limb led to improved muscle perfusion recovery. The potential of this cell therapy to prevent amputations in individuals with critical limb ischemia has been evaluated in clinical trial settings. The peripheral blood of individuals living with T2D for >10-years exhibits a depletion of ALDHhiSSClow VR progenitor cells, lower frequencies of ALDHhiSSCmid monocytes with vessel reparative function, and an increased frequency of ALDHhiSSChi inflammatory granulocyte precursors compared to that from individuals not living with T2D. The VRCE phenotype was partially reversed in people living with T2D and established coronary artery disease (CAD) after they had been on the SGLT2 inhibitor empagliflozin for 6 months. Obesity-induced VR cell depletion was also reversed by 3 months post-bariatric surgery. These findings collectively provided a mechanistic link between T2D, obesity, and impaired vessel homeostasis/repair, and also established that VRCE may be therapeutically reversed in a high CV-risk diabetic milieu. FIERCE will assess VR cell content in individuals living with T2D (<10-years duration) and age- and sex-matched individuals not living with T2D. It will also assess the function of circulating ALDHhi VR cells through: (1) Endothelial peripheral arterial tonometry (EndoPAT) to clinically analyze endothelial function through reactive hyperemic index, (2) multipotent hematopoietic colony formation assays in vitro, (3) single-cell RNA-sequencing (scRNA-seq) that is focused on mRNA expression associated with angiogenesis, and (4) quantitative, label-free secretome analyses to determine changes in pro-angiogenic protein secretion. The investigators hypothesize that VRCE impairs vascular repair and blood vessel regeneration during T2D and is partly caused by impaired pro-angiogenic properties of VR progenitor cell subsets. Specifically, the investigators postulate that multipotent hematopoietic colony formation, pro-angiogenic cytokine mRNA expression, and pro-angiogenic protein release will be lower in ALDHhi progenitor cell subsets from individuals living with T2D relative to participants not living with T2D. The investigators also predict that individuals living with T2D will exhibit a lower reactive hyperemic index compared to individuals not living with T2D. Characterization of ALDHhi progenitor VR cell dysfunction in the setting of T2D will generate proof-of-concept to support the potential use of VR cell content as a quantifiable and functional indicator of vascular health.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 90
Est. completion date June 2026
Est. primary completion date December 2025
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Adults =18 years of age. - Willing to provide written informed consent. - Documented history of T2D - No documented history of diabetes Exclusion Criteria: - Unable or unwilling to provide written informed consent or provide a peripheral blood sample. - Any life-threatening disease expected to result in death within two years of consent. - Any malignancy not considered cured (except basal cell carcinoma of the skin). An individual is considered cured if there has been no evidence of cancer recurrence for the five years prior to screening. - Known severe liver disease. - White blood cell count =15 x 10^9/L. - Active infectious disease requiring systemic antibiotic or anti-viral agents. - Known acquired immunodeficiency syndrome such as HIV. - Treated autoimmune disorders (e.g. T1D and LADA). - On oral steroid therapy (e.g. prednisone or other corticosteroids) or other immunosuppressive agents (e.g. methotrexate).

Study Design


Related Conditions & MeSH terms


Locations

Country Name City State
Canada Diagnostic Assessment Centre Scarborough Ontario

Sponsors (3)

Lead Sponsor Collaborator
Canadian Medical and Surgical Knowledge Translation Research Group Unity Health Toronto, University of Western Ontario, Canada

Country where clinical trial is conducted

Canada, 

References & Publications (25)

Bigarella CL, Liang R, Ghaffari S. Stem cells and the impact of ROS signaling. Development. 2014 Nov;141(22):4206-18. doi: 10.1242/dev.107086. — View Citation

Dimmeler S. Regulation of bone marrow-derived vascular progenitor cell mobilization and maintenance. Arterioscler Thromb Vasc Biol. 2010 Jun;30(6):1088-93. doi: 10.1161/ATVBAHA.109.191668. Epub 2010 May 7. — View Citation

Fadini GP, Boscaro E, de Kreutzenberg S, Agostini C, Seeger F, Dimmeler S, Zeiher A, Tiengo A, Avogaro A. Time course and mechanisms of circulating progenitor cell reduction in the natural history of type 2 diabetes. Diabetes Care. 2010 May;33(5):1097-102. doi: 10.2337/dc09-1999. Epub 2010 Feb 11. — View Citation

Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol. 2005 May 3;45(9):1449-57. doi: 10.1016/j.jacc.2004.11.067. — View Citation

Fallon P, Gentry T, Balber AE, Boulware D, Janssen WE, Smilee R, Storms RW, Smith C. Mobilized peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment — View Citation

GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023 Jul 15;402(10397):203-234. doi: 1 — View Citation

Haas AV, McDonnell ME. Pathogenesis of Cardiovascular Disease in Diabetes. Endocrinol Metab Clin North Am. 2018 Mar;47(1):51-63. doi: 10.1016/j.ecl.2017.10.010. — View Citation

Hayden J, O'Donnell G, deLaunois I, O'Gorman C. Endothelial Peripheral Arterial Tonometry (Endo-PAT 2000) use in paediatric patients: a systematic review. BMJ Open. 2023 Jan 18;13(1):e062098. doi: 10.1136/bmjopen-2022-062098. — View Citation

Hess DA, Meyerrose TE, Wirthlin L, Craft TP, Herrbrich PE, Creer MH, Nolta JA. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood. 2004 Sep 15;104(6):1648-55. — View Citation

Hess DA, Terenzi DC, Trac JZ, Quan A, Mason T, Al-Omran M, Bhatt DL, Dhingra N, Rotstein OD, Leiter LA, Zinman B, Sabongui S, Yan AT, Teoh H, Mazer CD, Connelly KA, Verma S. SGLT2 Inhibition with Empagliflozin Increases Circulating Provascular Progenitor — View Citation

Hess DA, Trac JZ, Glazer SA, Terenzi DC, Quan A, Teoh H, Al-Omran M, Bhatt DL, Mazer CD, Rotstein OD, Verma S. Vascular Risk Reduction in Obesity through Reduced Granulocyte Burden and Improved Angiogenic Monocyte Content following Bariatric Surgery. Cell — View Citation

Hess DA, Verma S, Bhatt D, Bakbak E, Terenzi DC, Puar P, Cosentino F. Vascular repair and regeneration in cardiometabolic diseases. Eur Heart J. 2022 Feb 10;43(6):450-459. doi: 10.1093/eurheartj/ehab758. — View Citation

Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R, Eades WC, Creer MH, Nolta JA. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood. 2006 Mar 1;107(5):2162- — View Citation

Kehl D, Generali M, Mallone A, Heller M, Uldry AC, Cheng P, Gantenbein B, Hoerstrup SP, Weber B. Proteomic analysis of human mesenchymal stromal cell secretomes: a systematic comparison of the angiogenic potential. NPJ Regen Med. 2019 Apr 16;4:8. doi: 10.1038/s41536-019-0070-y. eCollection 2019. — View Citation

Li Q, Wang M, Zhang S, Jin M, Chen R, Luo Y, Sun X. Single-cell RNA sequencing in atherosclerosis: Mechanism and precision medicine. Front Pharmacol. 2022 Oct 4;13:977490. doi: 10.3389/fphar.2022.977490. eCollection 2022. — View Citation

Mangialardi G, Spinetti G, Reni C, Madeddu P. Reactive oxygen species adversely impacts bone marrow microenvironment in diabetes. Antioxid Redox Signal. 2014 Oct 10;21(11):1620-33. doi: 10.1089/ars.2014.5944. — View Citation

Mauch P, Hellman S. Loss of hematopoietic stem cell self-renewal after bone marrow transplantation. Blood. 1989 Aug 1;74(2):872-5. — View Citation

Moore MA. Does stem cell exhaustion result from combining hematopoietic growth factors with chemotherapy? If so, how do we prevent it? Blood. 1992 Jul 1;80(1):3-7. No abstract available. — View Citation

Perin EC, Murphy MP, March KL, Bolli R, Loughran J, Yang PC, Leeper NJ, Dalman RL, Alexander J, Henry TD, Traverse JH, Pepine CJ, Anderson RD, Berceli S, Willerson JT, Muthupillai R, Gahremanpour A, Raveendran G, Velasquez O, Hare JM, Hernandez Schulman I — View Citation

Putman DM, Cooper TT, Sherman SE, Seneviratne AK, Hewitt M, Bell GI, Hess DA. Expansion of Umbilical Cord Blood Aldehyde Dehydrogenase Expressing Cells Generates Myeloid Progenitor Cells that Stimulate Limb Revascularization. Stem Cells Transl Med. 2017 J — View Citation

Putman DM, Liu KY, Broughton HC, Bell GI, Hess DA. Umbilical cord blood-derived aldehyde dehydrogenase-expressing progenitor cells promote recovery from acute ischemic injury. Stem Cells. 2012 Oct;30(10):2248-60. doi: 10.1002/stem.1206. — View Citation

Rawshani A, Rawshani A, Franzen S, Sattar N, Eliasson B, Svensson AM, Zethelius B, Miftaraj M, McGuire DK, Rosengren A, Gudbjornsdottir S. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2018 Aug 16;379(7):633-644. doi: 10.1056/NEJMoa1800256. — View Citation

Szmitko PE, Fedak PW, Weisel RD, Stewart DJ, Kutryk MJ, Verma S. Endothelial progenitor cells: new hope for a broken heart. Circulation. 2003 Jun 24;107(24):3093-100. doi: 10.1161/01.CIR.0000074242.66719.4A. No abstract available. — View Citation

Terenzi DC, Al-Omran M, Quan A, Teoh H, Verma S, Hess DA. Circulating Pro-Vascular Progenitor Cell Depletion During Type 2 Diabetes: Translational Insights Into the Prevention of Ischemic Complications in Diabetes. JACC Basic Transl Sci. 2018 Nov 5;4(1):9 — View Citation

Terenzi DC, Trac JZ, Teoh H, Gerstein HC, Bhatt DL, Al-Omran M, Verma S, Hess DA. Vascular Regenerative Cell Exhaustion in Diabetes: Translational Opportunities to Mitigate Cardiometabolic Risk. Trends Mol Med. 2019 Jul;25(7):640-655. doi: 10.1016/j.molmed.2019.03.006. Epub 2019 Apr 30. — View Citation

* Note: There are 25 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Hematopoietic colony formation in ALDHhiSSClow regenerative cell subsets The capacity for total multipotent hematopoietic colony formation in ALDHhiSSClow regenerative cell subsets isolated from individuals living with T2D versus individuals not living with T2D. Baseline
Secondary Endothelial function Endothelial peripheral arterial tonometry (EndoPAT) will be utilized to clinically analyze endothelial function through reactive hyperemic index in individuals living with T2D and individuals not living with T2D. Baseline
Secondary Frequency and absolute number of circulating ALDHhiSSClowCD133+ progenitor cells The change in the frequency and absolute number of circulating ALDHhiSSClowCD133+ progenitor cells between individuals living with T2D versus age- and sex-matched individuals not living with T2D Baseline
See also
  Status Clinical Trial Phase
Active, not recruiting NCT05666479 - CGM Monitoring in T2DM Patients Undergoing Orthopaedic Replacement Surgery
Completed NCT05647083 - The Effect of Massage on Diabetic Parameters N/A
Active, not recruiting NCT05661799 - Persistence of Physical Activity in People With Type 2 Diabetes Over Time. N/A
Completed NCT03686722 - Effect of Co-administration of Metformin and Daclatasvir on the Pharmacokinetis and Pharmacodynamics of Metformin Phase 1
Completed NCT02836704 - Comparison of Standard vs Higher Starting Dose of Insulin Glargine in Chinese Patients With Type 2 Diabetes (Glargine Starting Dose) Phase 4
Completed NCT01819129 - Efficacy and Safety of FIAsp Compared to Insulin Aspart in Combination With Insulin Glargine and Metformin in Adults With Type 2 Diabetes Phase 3
Completed NCT04562714 - Impact of Flash Glucose Monitoring in People With Type 2 Diabetes Using Non-Insulin Antihyperglycemic Therapy N/A
Completed NCT02009488 - Treatment Differences Between Canagliflozin and Placebo in Insulin Secretion in Subjects With Type 2 Diabetes Mellitus (T2DM) Phase 1
Completed NCT05896319 - Hyaluronic Acid Treatment of the Post-extraction Tooth Socket Healing in Subjects With Diabetes Mellitus Type 2 N/A
Recruiting NCT05598203 - Effect of Nutrition Education Groups in the Treatment of Patients With Type 2 Diabetes N/A
Completed NCT05046873 - A Research Study Looking Into Blood Levels of Semaglutide and NNC0480-0389 When Given in the Same Injection or in Two Separate Injections in Healthy People Phase 1
Terminated NCT04090242 - Impact of App Based Diabetes Training Program in Conjunction With the BD Nano Pen Needle in People With T2 Diabetes N/A
Completed NCT04030091 - Pulsatile Insulin Infusion Therapy in Patients With Type 1 and Type 2 Diabetes Mellitus Phase 4
Completed NCT03604224 - A Study to Observe Clinical Effectiveness of Canagliflozin 300 mg Containing Treatment Regimens in Indian Type 2 Diabetes Participants With BMI>25 kg/m^2, in Real World Clinical Setting
Completed NCT03620357 - Continuous Glucose Monitoring & Management In Type 2 Diabetes (T2D) N/A
Completed NCT01696266 - An International Survey on Hypoglycaemia Among Insulin-treated Patients With Diabetes
Completed NCT03620890 - Detemir Versus NPH for Type 2 Diabetes Mellitus in Pregnancy Phase 4
Withdrawn NCT05473286 - A Research Study Looking at How Oral Semaglutide Works in People With Type 2 Diabetes in Germany, as Part of Local Clinical Practice
Not yet recruiting NCT05029804 - Effect of Walking Exercise Training on Adherence to Disease Management and Metabolic Control in Diabetes N/A
Completed NCT04531631 - Effects of Dorzagliatin on 1st Phase Insulin and Beta-cell Glucose Sensitivity in T2D and Monogenic Diabetes Phase 2

External Links