Congenital Heart Disease Clinical Trial
Official title:
The Effect of 3D Modeling on Family Quality of Life, Surgical Success and Patient Outcomes in Congenital Heart Diseases: A Randomized Controlled Trial Protocol
Introduction and Objective: In recent years, 3D (three-dimensional) modeling has been added to traditional and effective diagnostic methods such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Echocardiography. The purpose of this study is to determine the effectiveness of models created from patients' own radiological images using 3D printing technology in the clinical setting to simulate surgery in the preoperative period and provide preoperative parental education to improve family quality of life and positively influence patient outcomes. Methods: The study is a two-group pretest-posttest randomized controlled study. The children who come to the outpatient clinic examination in a private hospital and who are subjected to Computed Tomography (CT) examination for diagnostic procedures will be modeled in the experimental group, pre-tests will be applied, and the model will be 3D printed after it is approved by the radiologist who is among the researchers. The sample size is 15 experimental group and 15 control group. After the radiologist's approval, surgical simulation and preoperative education will be applied to the experimental group. The control group will receive the same parent education as the standard model. Both groups will complete the Sociodemographic Information Form, Surgical Simulation Evaluation Form - Part I, and Pediatric Quality of Life Inventory (PedsQL) Family Impacts Module one week prior to hospitalization. Surgical simulation and preoperative education will be completed on the same day. On postoperative day 0, only the Surgical Simulation Evaluation Form - Part II will be applied and on postoperative day 15, the Surgical Simulation Evaluation Form - Part II and the Pediatric Quality of Life Inventory (PedsQL) Family Impacts Module will be applied to both groups as a posttest. Pilot Study and Results: Modeling and 3D printing studies were conducted to carry out the study. A total of four diagnosed and treated patients were retrospectively analyzed. An intracardiac anomaly was detected in the patient data taken for the first model. It was decided to model the extracardiac structures since the inside of the heart was filled with blood, and the blood could not be ruled out as a solid structure. Finally, aortic coarctation was modeled clearly from the images taken and completed.
Status | Not yet recruiting |
Enrollment | 30 |
Est. completion date | February 1, 2024 |
Est. primary completion date | December 1, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 0 Years to 18 Years |
Eligibility | Inclusion Criteria: - The participant has a congenital heart disease between the ages of 0-18 years, the congenital defect has extracardiac structure malformations (This is because the modeling is to be done before the operation is done in a shorter time, and it is desired to be trained for preoperative education). Hollow modeling requires more detailed technique and time (Bhatla et al., 2017). In addition, the difficulty of 3D printing the hollow model made in the pilot study was also effective in this decision), - Being a candidate for elective surgery, - Having a contrast-enhanced CT image taken during and before the patient's routine diagnostic procedure outside the scope of the study, - Having at least 15 days between the imaging and the surgical procedure plan, - The parents/legal guardians who gave permission to participate in the study were the inclusion criteria of the study. Exclusion Criteria: - Patients who do not require CT for diagnosis or treatment (no patient will undergo CT imaging within the scope of the study unless necessary for this study only), - Emergency surgical procedures, heart defects involving intracardiac structures (Atrial Septal Defect, Ventricular Septal Defect, Tetralogy of Fallot), - Additional anomalies/syndromes, - Chronic diseases (such as neurodevelopmental disorders, bleeding disorders, asthma, or Down syndrome), - History of cardiac arrest, contrast agent reflection in the images, - Image quality preventing modeling. |
Country | Name | City | State |
---|---|---|---|
Turkey | Yeditepe University | Istanbul |
Lead Sponsor | Collaborator |
---|---|
Yeditepe University |
Turkey,
Abdullah KA, Reed W. 3D printing in medical imaging and healthcare services. J Med Radiat Sci. 2018 Sep;65(3):237-239. doi: 10.1002/jmrs.292. Epub 2018 Jul 3. — View Citation
AHA. (2023). How 3D Printing Is Impacting Clinical Care. Anatomical Models. Retrieved from https://www.aha.org/aha-center-health-innovation-market-scan/2022-06-07-3-ways-3d-printing-revolutionizing-health-care
Anwar S, Singh GK, Miller J, Sharma M, Manning P, Billadello JJ, Eghtesady P, Woodard PK. 3D Printing is a Transformative Technology in Congenital Heart Disease. JACC Basic Transl Sci. 2018 May 30;3(2):294-312. doi: 10.1016/j.jacbts.2017.10.003. eCollection 2018 Apr. — View Citation
Atalay, B., Güler, R., & Hayli, Ç. M. (2021). Investigation of Preoperative Anxiety Levels in Pediatric Groups. Turkish Journal of Health Science and Life, 4(1), 24-26.
Awori J, Friedman SD, Chan T, Howard C, Seslar S, Soriano BD, Buddhe S. 3D models improve understanding of congenital heart disease. 3D Print Med. 2021 Sep 2;7(1):26. doi: 10.1186/s41205-021-00115-7. — View Citation
Azhar AS, AlShammasi ZH, Higgi RE. The impact of congenital heart diseases on the quality of life of patients and their families in Saudi Arabia. Biological, psychological, and social dimensions. Saudi Med J. 2016 Apr;37(4):392-402. doi: 10.15537/smj.2016.4.13626. — View Citation
Ballard DH, Mills P, Duszak R Jr, Weisman JA, Rybicki FJ, Woodard PK. Medical 3D Printing Cost-Savings in Orthopedic and Maxillofacial Surgery: Cost Analysis of Operating Room Time Saved with 3D Printed Anatomic Models and Surgical Guides. Acad Radiol. 2020 Aug;27(8):1103-1113. doi: 10.1016/j.acra.2019.08.011. Epub 2019 Sep 18. — View Citation
Barsella, R. (2020). Pilot Study: Educational Tool Reduces Parental Stress at Home Post Pediatric Cardiac Surgery.
Bhatla P, Tretter JT, Ludomirsky A, Argilla M, Latson LA Jr, Chakravarti S, Barker PC, Yoo SJ, McElhinney DB, Wake N, Mosca RS. Utility and Scope of Rapid Prototyping in Patients with Complex Muscular Ventricular Septal Defects or Double-Outlet Right Ventricle: Does it Alter Management Decisions? Pediatr Cardiol. 2017 Jan;38(1):103-114. doi: 10.1007/s00246-016-1489-1. Epub 2016 Nov 11. — View Citation
Bibb, R., Eggbeer, D., & Paterson, A. (2014). Medical modelling: the application of advanced design and rapid prototyping techniques in medicine: Woodhead Publishing.
Biber S, Andonian C, Beckmann J, Ewert P, Freilinger S, Nagdyman N, Kaemmerer H, Oberhoffer R, Pieper L, Neidenbach RC. Current research status on the psychological situation of parents of children with congenital heart disease. Cardiovasc Diagn Ther. 2019 Oct;9(Suppl 2):S369-S376. doi: 10.21037/cdt.2019.07.07. — View Citation
Bouma BJ, Mulder BJ. Changing Landscape of Congenital Heart Disease. Circ Res. 2017 Mar 17;120(6):908-922. doi: 10.1161/CIRCRESAHA.116.309302. — View Citation
Boutron I, Altman DG, Moher D, Schulz KF, Ravaud P; CONSORT NPT Group. CONSORT Statement for Randomized Trials of Nonpharmacologic Treatments: A 2017 Update and a CONSORT Extension for Nonpharmacologic Trial Abstracts. Ann Intern Med. 2017 Jul 4;167(1):40-47. doi: 10.7326/M17-0046. Epub 2017 Jun 20. — View Citation
Boyer PJ, Yell JA, Andrews JG, Seckeler MD. Anxiety reduction after pre-procedure meetings in patients with CHD. Cardiol Young. 2020 Jul;30(7):991-994. doi: 10.1017/S1047951120001407. Epub 2020 Jun 5. — View Citation
Bruning J, Kramer P, Goubergrits L, Schulz A, Murin P, Solowjowa N, Kuehne T, Berger F, Photiadis J, Weixler VH. 3D modeling and printing for complex biventricular repair of double outlet right ventricle. Front Cardiovasc Med. 2022 Nov 30;9:1024053. doi: 10.3389/fcvm.2022.1024053. eCollection 2022. — View Citation
Burkhart HM. Simulation in congenital cardiac surgical education: We have arrived. J Thorac Cardiovasc Surg. 2017 Jun;153(6):1528-1529. doi: 10.1016/j.jtcvs.2017.03.012. Epub 2017 Mar 10. No abstract available. — View Citation
Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gotzsche PC, Krleza-Jeric K, Hrobjartsson A, Mann H, Dickersin K, Berlin JA, Dore CJ, Parulekar WR, Summerskill WS, Groves T, Schulz KF, Sox HC, Rockhold FW, Rennie D, Moher D. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013 Feb 5;158(3):200-7. doi: 10.7326/0003-4819-158-3-201302050-00583. — View Citation
Chaudhuri, A., Naseraldin, H., Soberg, P. V., Kroll, E., & Librus, M. (2020). Should hospitals invest in customised on-demand 3D printing for surgeries? International Journal of Operations & Production Management, 41(1), 55-62.
Çil, E. (2006). Konjenital kalp hastaliklari. Turkiye Klinikleri J Int Med Sci, 2(15), 51-59.
Farooqi, K. M. (2017). Rapid prototyping in cardiac disease: Springer.
Feins RH. Expert commentary: Cardiothoracic surgical simulation. J Thorac Cardiovasc Surg. 2008 Mar;135(3):485-6. doi: 10.1016/j.jtcvs.2008.01.001. No abstract available. — View Citation
Gürkan, K. P., Bahar, Z., Çapik, C., Aydogdu, N. G., & Beser, A. (2020). Psychometric properties of the Turkish version of the pediatric quality of life: The family impact module in parents of children with type 1 diabetes. Children's Health Care, 49(1), 87-99.
Hartman DM, Medoff-Cooper B. Transition to home after neonatal surgery for congenital heart disease. MCN Am J Matern Child Nurs. 2012 Mar-Apr;37(2):95-100. doi: 10.1097/NMC.0b013e318241dac1. — View Citation
Hounsfield GN. Computed medical imaging. Nobel lecture, Decemberr 8, 1979. J Comput Assist Tomogr. 1980 Oct;4(5):665-74. doi: 10.1097/00004728-198010000-00017. No abstract available. — View Citation
Kain A, Mueller C, Golianu BJ, Jenkins BN, Fortier MA. The impact of parental health mindset on postoperative recovery in children. Paediatr Anaesth. 2021 Mar;31(3):298-308. doi: 10.1111/pan.14071. Epub 2020 Nov 29. — View Citation
Ladak LA, Hasan BS, Gullick J, Awais K, Abdullah A, Gallagher R. Health-related quality of life in surgical children and adolescents with congenital heart disease compared with their age-matched healthy sibling: a cross-sectional study from a lower middle-income country, Pakistan. Arch Dis Child. 2019 May;104(5):419-425. doi: 10.1136/archdischild-2018-315594. Epub 2018 Dec 15. — View Citation
Lau IWW, Liu D, Xu L, Fan Z, Sun Z. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments. PLoS One. 2018 Mar 21;13(3):e0194333. doi: 10.1371/journal.pone.0194333. eCollection 2018. — View Citation
Liddle D, Balsara S, Hamann K, Christopher A, Olivieri L, Loke YH. Combining patient-specific, digital 3D models with tele-education for adolescents with CHD. Cardiol Young. 2022 Jun;32(6):912-917. doi: 10.1017/S1047951121003243. Epub 2021 Aug 16. — View Citation
Liu Y, Chen S, Zuhlke L, Black GC, Choy MK, Li N, Keavney BD. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. 2019 Apr 1;48(2):455-463. doi: 10.1093/ije/dyz009. — View Citation
Lopez, C., Hanson, C. C., Yorke, D., Johnson, J. K., Mill, M. R., Brown, K. J., & Barach, P. (2017). Improving communication with families of patients undergoing pediatric cardiac surgery. Progress in Pediatric Cardiology, 45, 83-90.
Mahesh M. Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics. 2002 Jul-Aug;22(4):949-62. doi: 10.1148/radiographics.22.4.g02jl14949. — View Citation
Marino BS, Lipkin PH, Newburger JW, Peacock G, Gerdes M, Gaynor JW, Mussatto KA, Uzark K, Goldberg CS, Johnson WH Jr, Li J, Smith SE, Bellinger DC, Mahle WT; American Heart Association Congenital Heart Defects Committee, Council on Cardiovascular Disease in the Young, Council on Cardiovascular Nursing, and Stroke Council. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 2012 Aug 28;126(9):1143-72. doi: 10.1161/CIR.0b013e318265ee8a. Epub 2012 Jul 30. — View Citation
Ngan EM, Rebeyka IM, Ross DB, Hirji M, Wolfaardt JF, Seelaus R, Grosvenor A, Noga ML. The rapid prototyping of anatomic models in pulmonary atresia. J Thorac Cardiovasc Surg. 2006 Aug;132(2):264-9. doi: 10.1016/j.jtcvs.2006.02.047. — View Citation
Olivieri LJ, Su L, Hynes CF, Krieger A, Alfares FA, Ramakrishnan K, Zurakowski D, Marshall MB, Kim PC, Jonas RA, Nath DS. "Just-In-Time" Simulation Training Using 3-D Printed Cardiac Models After Congenital Cardiac Surgery. World J Pediatr Congenit Heart Surg. 2016 Mar;7(2):164-8. doi: 10.1177/2150135115623961. — View Citation
Puranik R, Muthurangu V, Celermajer DS, Taylor AM. Congenital heart disease and multi-modality imaging. Heart Lung Circ. 2010 Mar;19(3):133-44. doi: 10.1016/j.hlc.2010.01.001. Epub 2010 Feb 23. — View Citation
Raju TN. The Nobel chronicles. 1979: Allan MacLeod Cormack (b 1924); and Sir Godfrey Newbold Hounsfield (b 1919). Lancet. 1999 Nov 6;354(9190):1653. doi: 10.1016/s0140-6736(05)77147-6. No abstract available. — View Citation
Ruggiero KM, Hickey PA, Leger RR, Vessey JA, Hayman LL. Parental perceptions of disease-severity and health-related quality of life in school-age children with congenital heart disease. J Spec Pediatr Nurs. 2018 Jan;23(1). doi: 10.1111/jspn.12204. Epub 2017 Dec 20. — View Citation
Ryan JR, Moe TG, Richardson R, Frakes DH, Nigro JJ, Pophal S. A novel approach to neonatal management of tetralogy of Fallot, with pulmonary atresia, and multiple aortopulmonary collaterals. JACC Cardiovasc Imaging. 2015 Jan;8(1):103-104. doi: 10.1016/j.jcmg.2014.04.030. Epub 2014 Nov 12. No abstract available. — View Citation
Shiraishi I, Yamagishi M, Hamaoka K, Fukuzawa M, Yagihara T. Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur J Cardiothorac Surg. 2010 Feb;37(2):302-6. doi: 10.1016/j.ejcts.2009.07.046. Epub 2009 Sep 15. — View Citation
Simeone S, Platone N, Perrone M, Marras V, Pucciarelli G, Benedetti M, Dell'Angelo G, Rea T, Guillari A, Da Valle P, Gargiulo G, Botti S, Artioli G, Comentale G, Ferrigno S, Palma G, Baratta S. The lived experience of parents whose children discharged to home after cardiac surgery for congenital heart disease. Acta Biomed. 2018 Apr 4;89(4-S):71-77. doi: 10.23750/abm.v89i4-S.7223. — View Citation
Staveski SL, Boulanger K, Erman L, Lin L, Almgren C, Journel C, Roth SJ, Golianu B. The Impact of Massage and Reading on Children's Pain and Anxiety After Cardiovascular Surgery: A Pilot Study. Pediatr Crit Care Med. 2018 Aug;19(8):725-732. doi: 10.1097/PCC.0000000000001615. — View Citation
Tabachnick, B., & Fidell, L. (2014). Pearson new international edition: Using multivariate statistics (Sixth). In: Pearson Education Limited
Tack P, Willems R, Annemans L. An early health technology assessment of 3D anatomic models in pediatric congenital heart surgery: potential cost-effectiveness and decision uncertainty. Expert Rev Pharmacoecon Outcomes Res. 2021 Oct;21(5):1107-1115. doi: 10.1080/14737167.2021.1879645. Epub 2021 Feb 20. — View Citation
Tenhoff, A. C., Aggarwal, V., Ameduri, R., Deakyne, A., Iles, T. L., Said, S. M., . . . Iaizzo, P. A. (2021). Patient-Specific Three-Dimensional Computational Heart Modeling and Printing to Enhance Clinical Understandings and Treatment Planning: Congenital Recurrent Pulmonary Artery Stenosis and Transcatheter Pulmonary Valve Replacement. Paper presented at the 2021 Design of Medical Devices Conference.
Valverde I, Gomez-Ciriza G, Hussain T, Suarez-Mejias C, Velasco-Forte MN, Byrne N, Ordonez A, Gonzalez-Calle A, Anderson D, Hazekamp MG, Roest AAW, Rivas-Gonzalez J, Uribe S, El-Rassi I, Simpson J, Miller O, Ruiz E, Zabala I, Mendez A, Manso B, Gallego P, Prada F, Cantinotti M, Ait-Ali L, Merino C, Parry A, Poirier N, Greil G, Razavi R, Gomez-Cia T, Hosseinpour AR. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur J Cardiothorac Surg. 2017 Dec 1;52(6):1139-1148. doi: 10.1093/ejcts/ezx208. — View Citation
van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, Roos-Hesselink JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011 Nov 15;58(21):2241-7. doi: 10.1016/j.jacc.2011.08.025. — View Citation
Varni JW, Sherman SA, Burwinkle TM, Dickinson PE, Dixon P. The PedsQL Family Impact Module: preliminary reliability and validity. Health Qual Life Outcomes. 2004 Sep 27;2:55. doi: 10.1186/1477-7525-2-55. — View Citation
Wang AT, Sundt TM 3rd, Cutshall SM, Bauer BA. Massage therapy after cardiac surgery. Semin Thorac Cardiovasc Surg. 2010 Autumn;22(3):225-9. doi: 10.1053/j.semtcvs.2010.10.005. — View Citation
Wu W, He J, Shao X. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990-2017. Medicine (Baltimore). 2020 Jun 5;99(23):e20593. doi: 10.1097/MD.0000000000020593. — View Citation
Yoo SJ, Hussein N, Peel B, Coles J, van Arsdell GS, Honjo O, Haller C, Lam CZ, Seed M, Barron D. 3D Modeling and Printing in Congenital Heart Surgery: Entering the Stage of Maturation. Front Pediatr. 2021 Feb 5;9:621672. doi: 10.3389/fped.2021.621672. eCollection 2021. — View Citation
Yoo SJ, Spray T, Austin EH 3rd, Yun TJ, van Arsdell GS. Hands-on surgical training of congenital heart surgery using 3-dimensional print models. J Thorac Cardiovasc Surg. 2017 Jun;153(6):1530-1540. doi: 10.1016/j.jtcvs.2016.12.054. Epub 2017 Feb 9. — View Citation
* Note: There are 51 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Pretest-Family Impacts Module of the Pediatric Quality of Life Inventory PedsQL | The Turkish validity and reliability study of this scale, first developed by Varni et al. in 2004, was conducted and published by Gürkan et al. in 2019 (Gürkan, Bahar, Çapik, Aydogdu, & Beser, 2020; Varni, Sherman, Burwinkle, Dickinson, & Dixon, 2004). The data on the sub-dimensions and Cronbach alpha values of this scale, which has 8 sub-dimensions in total, are as follows; physical (0.85), emotional (0.83), social (0.82), cognitive (0.86), communication (0.51), anxiety (0.79) activities of daily living (0.89), family relationships (0.95). A total score of 0.92 was reported. In addition, Cronbach alpha values for all subscales were also included in the original study. The scale does not have a cut-off point. A high score indicates a good family quality of life functioning, while a low score indicates a negative family quality of life. Within the scope of this study, a comparison between mean scores will be made. | 1 week prior to surgery | |
Primary | Posttest-Family Impacts Module of the Pediatric Quality of Life Inventory PedsQL | The Turkish validity and reliability study of this scale, first developed by Varni et al. in 2004, was conducted and published by Gürkan et al. in 2019 (Gürkan, Bahar, Çapik, Aydogdu, & Beser, 2020; Varni, Sherman, Burwinkle, Dickinson, & Dixon, 2004). The data on the sub-dimensions and Cronbach alpha values of this scale, which has 8 sub-dimensions in total, are as follows; physical (0.85), emotional (0.83), social (0.82), cognitive (0.86), communication (0.51), anxiety (0.79) activities of daily living (0.89), family relationships (0.95). A total score of 0.92 was reported. In addition, Cronbach alpha values for all subscales were also included in the original study. The scale does not have a cut-off point. A high score indicates a good family quality of life functioning, while a low score indicates a negative family quality of life. Within the scope of this study, a comparison between mean scores will be made. | 15 days later to surgery | |
Primary | Posttest-Surgical Simulation Questionnaire Part II | It has 7 questions prepared according the literature. Effects of 3D modeling on surgical complications, duration of the operation, duration of the hospitalization, duration of the intensive care unit, need of recurrent surgery, Unusual complications (except for pain, cardiopulmonary resuscitation, need for ECMO (Extracorporeal Membrane Oxygenation), Seizure, rhythm changes, etc.) | First post operative day | |
Primary | Posttest-Surgical Simulation Questionnaire Part II | It has 7 questions prepared according the literature. Effects of 3D modeling on surgical complications, duration of the operation, duration of the hospitalization, duration of the intensive care unit, need of recurrent surgery, Unusual complications (except for pain, cardiopulmonary resuscitation, need for ECMO (Extracorporeal Membrane Oxygenation), Seizure, rhythm changes, etc.) | 15 days later to surgery | |
Secondary | Pretest Surgical Simulation Questionnaire Part I | Surgeon's professional experience and age, opinions about 3D Heart Modeling (surgical simulation evaluations such as effectiveness on techniques of the operations, opinions about strong and week sides of 3D modeling) | 1 week prior to surgery |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05654272 -
Development of CIRC Technologies
|
||
Recruiting |
NCT04992793 -
Paediatric Brain Injury Following Cardiac Interventions
|
||
Recruiting |
NCT05213598 -
Fontan Associated Liver Disease and the Evaluation of Biomarkers for Disease Severity Assessment
|
||
Completed |
NCT04136379 -
Comparison of Home and Standard Clinic Monitoring of INR in Patients With CHD
|
||
Completed |
NCT04814888 -
3D Airway Model for Pediatric Patients
|
||
Recruiting |
NCT04920643 -
High-exchange ULTrafiltration to Enhance Recovery After Pediatric Cardiac Surgery
|
N/A | |
Completed |
NCT05934578 -
Lymphatic Function in Patients With Fontan Circulation: Effect of Physical Training
|
N/A | |
Recruiting |
NCT06041685 -
Effect of Local Warming for Arterial Catheterization in Pediatric Anesthesia
|
N/A | |
Recruiting |
NCT05902013 -
Video Laryngoscopy Versus Direct Laryngoscopy for Nasotracheal Intubation
|
N/A | |
Not yet recruiting |
NCT05687292 -
Application of a Clinical Decision Support System to Reduce Mechanical Ventilation Duration After Cardiac Surgery
|
||
Not yet recruiting |
NCT05524324 -
Cardiac Resynchronization Therapy in Adult Congenital Heart Disease With Systemic Right Ventricle: RIGHT-CRT
|
N/A | |
Completed |
NCT02746029 -
Cardiac Murmurs in Children: Predictive Value of Cardiac Markers
|
||
Completed |
NCT03119090 -
Fontan Imaging Biomarkers (FIB) Study
|
||
Completed |
NCT02537392 -
Multi-micronutrient Supplementation During Peri-conception and Congenital Heart Disease
|
N/A | |
Recruiting |
NCT02258724 -
Swiss National Registry of Grown up Congenital Heart Disease Patients
|
||
Completed |
NCT01966237 -
Milrinone Pharmacokinetics and Acute Kidney Injury
|
||
Terminated |
NCT02046135 -
Sodium Bicarbonate to Prevent Acute Kidney Injury in Children Undergoing Cardiac Surgery
|
Phase 2 | |
Recruiting |
NCT01184404 -
Bosentan Improves Clinical Outcome of Adults With Congenital Heart Disease or Mitral Valve Lesions Who Undergo CArdiac Surgery
|
N/A | |
Completed |
NCT01548950 -
Drug Therapy and Surgery in Congenital Heart Disease With Pulmonary Hypertension
|
N/A | |
Completed |
NCT01821287 -
Nutritional Failure in Infants With Single Ventricle Congenital Heart Disease
|
N/A |