View clinical trials related to Cardiomyopathy, Hypertrophic.
Filter by:Objective of the study: to evaluate whether edge-to-edge technique improves clinical and hemodynamic results in patients scheduled to septal myectomy for severely symptomatic hypertrophic obstructive cardiomyopathy.
This study aims to identify and assess new CMR techniques that can improve current CMR protocols.
Hypertrophic cardiomyopathy (HCM) is a frequent cardiac pathology with an estimated prevalence of 1/500 in France. The main risk factor for sudden death in this pathology is the presence and extent of left ventricular obstruction. To date, the only method allowing a reliable assessment of the extent of left ventricular obstruction is Doppler echocardiography. All patients with HCM should undergo cardiac magnetic resonance imaging (MRI) to confirm the diagnosis and for the detection of fibrosis, but conventional sequences cannot reliably assess the obstruction. 4D-flow MRI provides a complete coverage of an entire volume with the ability to simultaneously measure the outputs of all vessels within that volume in a single sequence and might be able to quantify left ventricular obstruction. The main objective of this study is to compare the quantification of left ventricular obstruction in hypertrophic cardiomyopathy by Doppler echocardiography and 4D flow MRI.
Hypertrophic Cardiomyopathy (HCM) is the most common inherited heart muscle condition affecting up to 1 in 200 of the general population. It results from mutations in genes encoding components of the contractile apparatus in the heart muscle cell (myocyte). These mutations result in increased energy cost of force production for the myocyte which then cumulatively causes a myocardial energy deficit. This myocardial energy deficit is then thought to lead to cardiac hypertrophy ('left ventricular hypertrophy' or LVH) in HCM. LVH leads to impairments in heart muscle function, heart muscle oxygenation and microvascular blood flow and is the chief driver of patient symptoms in HCM. These symptoms consist of chest pain, shortness of breath, dizziness, fainting episodes or palpitations. Occasionally, the disease may cause sudden cardiac death (SCD). HCM is the most common cause of SCD in young people including competitive athletes. In addition, HCM has been found to result in significant global deterioration in health-related quality of life. Treatment of HCM has focused on relief of symptoms by drugs such as ß-blockers which slow the heart rate and improve heart function. However, symptom relief is often incomplete and there is no evidence on the benefit of ß-blockers or related medications to reverse LVH. Perhexiline, a potent carnitine palmitoyl transferase-1 (CPT-1) inhibitor shifts myocardial metabolism to more efficient glucose utilisation and rectifies impaired myocardial energetics. It is currently used to treat angina in patients with coronary artery disease. There is some preliminary evidence that Perhexiline may aid in the improvement of symptoms in patients with HCM. However, the effect of any form of therapy on potential regression of LVH in HCM remains unexplored. In this randomised double-blind placebo-controlled trial, the investigators will use state of the art cardiac imaging, principally advanced echocardiography and Cardiovascular Magnetic Resonance (CMR) to study the effects of perhexiline on LVH, cardiac function, and oxygenation in symptomatic patients with HCM. The investigators hypothesize that perhexiline will favourably reduce LVH and improve myocardial oxygenation by improving myocardial energetics, and that these putative morphological and functional changes can be accurately measured utilizing echocardiography and CMR. If this pilot study supports the hypothesis, then it will pave the way for a major randomised controlled trial to definitely determine the role of Perhexiline in HCM.
This is a randomized, double-blind, placebo-controlled, sequential, 5-day treatment, ascending dose study in subjects with obstructive HCM aged 18-70 years. The purpose of this study is to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of CT-G20.
Hypertrophic cardiomyopathy (HCM) is a heart disease characterized by hypertrophy of the left ventricular myocardium and is most often caused by mutations in sarcomere genes. The structural and functional abnormalities cannot be explained by flow-limiting coronary artery disease or loading conditions. The disease affects at least 0,2% of the population worldwide and is the most common cause of sudden cardiac death (SCD) in young people and competitive athletes due to fatal ventricular arrhythmia, but in most patients, however, HCM has a benign course. Therefore, it is of utmost importance to properly evaluate patients and identify those who would benefit from a cardioverter-defibrillator (ICD) implantation.
Objective to investigate the safety and effectiveness of Echocardiography-guided radiofrequency ablation in patients with Hypertrophic obstructive Cardiomyopathy (HOCM). Percutaneous intramyocardial septal radiofrequency ablation (Liwen Procedure) is a safe and effective treatment approach for Hypertrophic obstructive Cardiomyopathy and results in sustained improvement in exercise capacity, persistent in reducing Left Ventricle Outflow Tract (LVOT) gradient, and sustained improvement in cardiac function. In patients with disabling symptoms caused by Hypertrophic obstructive Cardiomyopathy (HOCM),Echocardiography-guided radiofrequency ablation could be a less invasive treatment option. Percutaneous intramyocardial septal radiofrequency ablation (Liwen Procedure) is a new method for the diagnosis or treatment of heart disease by using a special diagnosis and treatment device to the heart target area under the guidance of image technology. The method breaks through the worldwide problem of the minimally invasive diagnosis and treatment of the myocardium on the beating heart, so as to avoid the X-ray radiation and contrast agent damage . As a new pathway of cardiac disease intervention, Liwen Procedure can be used in congenital heart disease, myocardial biopsies, drug injection, cell implantation and instrument implantation in addition to Hypertrophic Cardiomyopathy and cardiac tumors. It has important clinical value and broad application prospect. In this study, Liwen RF radiofrequency ablation system was used to treat HOCM , and evaluate its safety and effectiveness , in order to provide a new medical device for Liwen Procedure of HOCM.
This is a randomized, double-blind, placebo-controlled, multi-center study in the United States (U.S.) that will evaluate the effect of mavacamten treatment on reducing the number of septal reduction therapy (SRT) procedures performed in subjects with symptomatic obstructive hypertrophic cardiomyopathy (oHCM [also known as HOCM]) who are eligible for SRT based on ACCF/AHA 2011 and/or ESC 2014 guidelines.
Hypertrophic Obstructive cardiomyopathy (HOCM) is the most common genetic cardiomyopathy, heterogeneous in phenotype and clinical course. The genotype-phenotype relationship and associated molecular mechanisms are still incompletely understood. In the HOCM milieu, increased energy cost of force production, impairing performance and mitochondrial function, may be associated to patients' genotype and/or phenotype
Perioperative management may have strong connections with postoperative complications (PCs). However, little is known about the perioperative risk factors of PCs after septal myectomy in hypertrophic obstructive cardiomyopathy (HOCM) patients. This study is designed to assess the in-hospital PCs rate of HOCM patients and to identify perioperative risk factors of PCs in patients who underwent septal myectomy. Retrospective chart review will identify adult HOCM patients who underwent septal myectomy from October 2013 to December 2018 in the investigators' hospital. Patients' data will be collected from electronic medical records. The multivariable logistic regression analysis will be used to determine independent predictors. The predictive ability of individual predictor and different combination of multiple risk factors on PCs will also be calculated.