View clinical trials related to Carcinoma, Renal Cell.
Filter by:RATIONALE: Vaccines made from a patient's white blood cells and tumor cells may make the body build an immune response to kill tumor cells. PURPOSE: Phase I/II trial to study the effectiveness of vaccine therapy in treating patients who have recurrent or stage III or stage IV kidney cancer.
Phase II trial to study the effectiveness of SU5416 in treating patients who have metastatic kidney cancer that has not responded to previous therapy with interleukin-2. SU5416 may stop the growth of kidney cancer by stopping blood flow to the tumor
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. Chemoprotective drugs such as amifostine may protect normal cells from the side effects of high-dose chemotherapy. PURPOSE: Phase I trial to study the effectiveness of amifostine in protecting from the side effects of peripheral stem cell transplantation in treating patients who have high-risk or relapsed solid tumors.
Current therapies for Stage IV Kidney Cancer provide very limited benefit to the patient. The anti-cancer properties of Antineoplaston therapy suggest that it may prove beneficial in the treatment of Stage IV Kidney Cancer. PURPOSE: This study is being performed to determine the effects (good and bad) that Antineoplaston therapy has on patients with Stage IV Kidney Cancer.
About 27,000 new cases of renal cell carcinoma (RCC) are diagnosed every year in the United States. 11,000 of these cases will die from the disease. More than half of patients present with advanced or metastatic disease for which chemotherapy plays a very limited role. Therefore, development of another therapeutic approach is needed. Cancers in humans are commonly associated with mutations in dominant and recessive oncogenes. These genes produce mutated proteins that are unique to cancer cells. Von Hipple-Lindau (VHL) gene which is associated with the development of the VHL disease, has been recently mapped and cloned, and it is found to be mutated in 57% of sporadic renal cell carcinomas. Data in mice have shown the generation of major histocompatibility complex (MHC) restricted cytotoxic T lymphocyte (CTL) that are capable of detecting endogenous cytoplasmic peptide derived from mutated oncogenes. In addition, we have recently demonstrated, by conducting different phase I clinical trials in which we vaccinate cancer patients with mutated Ras or p53 peptides corresponding to the abnormality patients harbor in their tumors, that in some patients we can generate immunological responses represented by the generation of lymphocytes (CD4+ and/or CD8+). In the current study, we would like to extend our observations to test whether VHL tumor suppressor protein can be immunologically targeted by vaccination. We have identified specific epitopes along the amino acid sequence of the VHL protein, which represent known specific human leukocyte antigen (HLA) class-I binding motifs. These amino acids stretches in the VHL protein correspond to the area of the point mutation hot spots. Therefore, we propose to treat patients with sporadic RCC who carry VHL mutations in their tumors with corresponding mutant VHL peptide vaccination. This vaccination will be done either by using pulsed-autologous peripheral mononuclear cells with the peptides, or peptides administered subcutaneously alone or in combination with cytokines.