View clinical trials related to Brain Tumors.
Filter by:The purpose of this study is to evaluate the efficacy of the combination of surgery, conventional chemotherapy, sequential high-dose chemotherapy with peripheral blood stem cell transplantation and reduced dose radiation therapy in high-risk PNET brain tumors.
In patients with malignant glioma, to determine the efficacy of prophylaxis with LMWH (dalteparin) compared to placebo, both commenced beyond the immediate postoperative period, for the prevention of VTE.
RATIONALE: Drugs used in chemotherapy, such as topotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Colony-stimulating factors, such as G-CSF, may increase the number of immune cells found in bone marrow or peripheral blood and may help the immune system recover from the side effects of chemotherapy. Radiation therapy uses high-energy x-rays to kill tumor cells. Topotecan may make tumor cells more sensitive to radiation therapy . Giving topotecan and G-CSF together with radiation therapy may be an effective treatment for brain stem glioma. PURPOSE: This phase I/II trial is studying the side effects and best dose of topotecan when given together with G-CSF and radiation therapy and to see how well they work in treating young patients with newly diagnosed brain stem glioma.
This study in children and young adults will compare two types of imaging, positron emission tomography ([(18)F]-DG PET) and proton magnetic resonance spectroscopy ((1)H-MRSI), to determine activity of a brain tumor or abnormal tissue in the brain following treatment for a brain tumor. Children with brain tumors are generally followed with magnetic resonance imaging (MRI) scans to evaluate response to treatment. However, because MRI only provides information on the structure of the brain, it may difficult to tell if an abnormal finding is due to tumor, swelling, scar tissue, or dead tissue. (1)H-MRSI and [(18)F]-DG PET, on the other hand, provide information on the metabolic activity of brain lesions. These two methods will be compared and evaluated for their ability to provide important additional information on childhood brain tumors. Patients between 1 and 21 years of age with a brain tumor or brain tissue abnormality following treatment for a brain tumor may be eligible for this study. Candidates will be screened with a medical history and physical examination, pregnancy test in women who are able to become pregnant, and a blood test for glucose. Participants will undergo the following procedures: (1)H-MRSI - This test is similar to MRI and is done in the same scanning machine. In MRI, scans of the brain are obtained by applying a strong magnetic field and then collecting the signals released from water after the magnetic field is changed. Pictures of the brain are then obtained by computer analysis of these signals. In (1)H-MRSI, the computer blocks the signal from water to get information on brain chemicals that can indicate whether an abnormality is tumor or dead tissue. Both MRI and MRI and (1)H-MRSI are done in this study. For these tests, the child lies on a stretcher that moves into the scanner - a narrow metal cylinder with a strong magnetic field. The child's head is placed in a headrest to prevent movement during the scan. He or she will hear loud thumping noises caused by the electrical switching of the magnetic field. A contrast agent is given through an intravenous (IV) catheter (plastic tube placed in an arm vein) or through a central line if one is in place. The contrast material brightens the images to provide a clearer picture of abnormalities. Children who have difficulty holding still or being in a scanning machine are given medications by an anesthesiologist to make them sleep through the procedure. Children who are awake during the procedure can communicate with the MRI technician at all times and ask to be removed from the scanner at any time. The MRI and (1)H-MRSI take 1-1/2 to 2 hours to complete. [(18)F]-DG PET - For this test, [(18)F]-DG (a radioactive form of glucose) is injected into the patient's arm vein through a catheter, followed by the PET scan, similar to a very open MRI scan without the noise. The PET scan tells how active the patient's tumor is by tracking the radioactive glucose. All cells use glucose, but cells with increased metabolism, such as cancer cells, use more glucose than normal cells. After the glucose injection, the patient lies quietly in a darkened room for 30 minutes, after which he or she is asked to urinate to help reduce the dose of radiation to the bladder. Then, the scan begins. When the scan is finished (after about 1 hour), the child is asked to urinate again and then every 3 to 4 hours for the rest of the day. Patients remain in the study for 2 years unless they withdraw, become pregnant, or require sedation but can no longer use an anesthetic. MRI and 1H-MRSI scans may be repeated every few months during the study period, if necessary. Only one PET scan is done each year.
The purpose of this study is to evaluate safety and efficacy ofKarenitecin (BNP1350) as a treatment of adults with brain tumors.
The purposes of this study are to find the highest dose of mafosfamide that can be given without causing severe side effects, to see how well the combination of these chemotherapy drugs and lower doses of radiation work to delay or stop the growth of the tumor, and to evaluate the pharmacokinetics (how the body handles) of Mafosfamide.
RATIONALE: Electroacupuncture may help to reduce or prevent delayed nausea and vomiting in patients treated with chemotherapy. PURPOSE: This randomized clinical trial is studying the effectiveness of electroacupuncture in treating delayed nausea and vomiting in patients who are receiving chemotherapy for newly diagnosed childhood sarcoma, neuroblastoma, nasopharyngeal cancer, germ cell tumors, or Hodgkin lymphoma.
RATIONALE: Radiation therapy uses high-energy x-rays to damage tumor cells, but also damages normal cells in the developing brains of children. Combining low-dose radiation therapy in combination with chemotherapy should be effective in treating medulloblastoma while avoiding the long-term side effects of giving higher dose radiation to children with newly diagnosed average risk medulloblastoma.
RATIONALE: Vaccines made from a peptide may make the body build an immune response to kill cancer cells. PURPOSE: This phase I trial is studying two different vaccines to treat patients who have gastric, prostate, or ovarian cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of temozolomide in treating patients who have leptomeningeal metastases from a solid tumor or lymphoma.