View clinical trials related to Brain Neoplasms.
Filter by:What is the efficacy and safety of q 30 minutes vs. q 1hour glucose sampling and intervention for an intensive insulin protocol to achieve and maintain euglycemia in non-diabetic patients undergoing craniotomy? The investigators hypothesize that in non-diabetic patients undergoing craniotomy, monitoring glucose and modifying insulin infusions every 30 minutes compared to every hour will help them reach target glucose levels faster and maintain them more efficiently with the same insulin protocol.
The purpose of this study is to determine the maximum dose of sunitinib that can be tolerated when treatment is combined with radiotherapy. Patients who decide to take part in the study will start taking sunitinib alone for 7 days. On the seventh day of taking sunitinib, patients will be given stereotactic radiosurgery (SRS). The dose of radiation that patients will receive when they are given SRS is a standard dose used to help shrink brain metastases. The dose of radiation and the way it is delivered is not experimental. Patients will then continue to take sunitinib seven days per week after SRS, and depending on how far along the study is when they join, they may continue taking the drug for up to 13 weeks after SRS. Patients will undergo weekly assessment during study treatment.
This phase I trial is studying the side effects and best dose of cediranib maleate when given together with cilengitide in treating patients with progressive or recurrent glioblastoma. Cediranib maleate and cilengitide may stop the growth of tumor cells by blocking blood flow to the tumor. Giving cediranib maleate together with cilengitide may kill more tumor cells.
The purpose of this study is to evaluate high and low areas of growth, or proliferation, within the tumor. An imaging technique using a very small amount of a radioactive tracer called 18Ffluoro-deoxy-L-thymidine (18F-FLT) can detect areas of rapid growth within the tumor. This imaging technique is called a FLT PET imaging. This present study involves obtaining one scan using FLT PET imaging. The goal of this study is to investigate associations between the imaging findings showing differences in growth rate within the tumor and the biology of the tumor that is measured in the sampled tumor tissue. This information may be used in future brain tumor patients to determine the best combination of treatment for individual patients. These studies may also improve our understanding of the types of changes taking place in brain tumor tissue that could improve individual patient outcome. FLT is produced for human use by the MSKCC cyclotron facility under an investigational new drug (IND) approval issued by the US Food and Drug Administration (FDA). This means that FLT is produced under strict rules and regulations, is considered safe, and has been approved for use in humans for certain disease conditions. 18F-FLT has been used in several research studies to date at this institution.
This clinical trial studies dynamic susceptibility-weighted contrast enhanced magnetic resonance imaging (DSC-MRI) after administration of ferumoxytol and dynamic contrast-enhanced MRI (DCE-MRI) after administration of a gadolinium-based contrast agent (GBCA) in viewing the vessels of the brain in younger patients with brain tumors. Ferumoxytol is an experimental form of very small iron particles that are taken by the blood stream to cells adjacent and inside the tumor. These iron particles may make it easier to see the areas of the brain that are affected by tumor. Ferumoxytol may work better than standard GBCA in viewing the vessels of the brain and brain tumor on MRI. Using ferumoxytol and GBCA in the same MRI session may provide more information about tumor blood supply and the extent of the tumor.
This protocol describes a study to gain experience in the use of Clevidipine for perioperative blood pressure control in patients undergoing craniotomy for brain tumor or epilepsy focus resection. The purpose of this study is to establish the efficacy of Clevidipine for intraoperative blood pressure control in patients undergoing intracranial procedures, and gather information on the dosage and adverse effects of Clevidipine in neurosurgical patients. This initial pilot experience serves to familiarize the investigators with the use of this drug prior to initiating a planned randomized trial versus institutional standard-of-care therapy. The investigators will obtain greater familiarity with the dosing of clevidipine in this patient population and collect information on the incidence of adverse effects.
The purpose of the study is to test the feasibility of obtaining interpretable in vivo endomicroscopy images which can be compared with traditional histopathology. Hypothesis: That a rigid confocal endomicroscope can be used during neurosurgery to provide in vivo histology that enables differentiation of tumour tissue from normal adjacent brain tissue.
The purpose of this study is to determine the maximum tolerated dose (MTD) of vorinostat given concurrently with stereotactic radiosurgery (SRS) to treat non-small cell lung cancer (NSCLCA) brain metastases in patient with 1-4 lesions.
This phase I trial is studying the side effects and best dose of ABT-888 when given in combination with temozolomide in treating young patients with recurrent or refractory CNS tumors. ABT-888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving ABT-888 together with temozolomide may kill more tumor cells.
Study of the influence of brain tumor on bilateral electroencephalogram (EEG) during anaesthesia.