Clinical Trials Logo

Clinical Trial Summary

Digestive endoscopy center of the second affiliated hospital of medical college of zhejiang university and engineers of naki medical co., ltd. in Hong Kong independently developed an ai-assisted diagnostic model of digestive endoscopy in the early stage, namely the deep learning model.The deep learning model through the early stage of the study, is able to identify lesions of digest tract.The sensitivity for the diagnosis of some diseases, such as colon polyps, is 99%. On the one hand, this auxiliary diagnostic model can guide endoscopic examination for beginners; on the other hand, it can improve the detection rate of lesions and reduce the rate of missed diagnosis; on the other hand, the overall operating efficiency of the endoscopic center is improved, which is conducive to the quality control of endoscopic examination. Now the AI-assisted diagnostic model has been further improved, and it is planned to carry out further clinical verification in the digestive endoscopy center of our hospital. It is connected to the endoscopic system of our hospital and used simultaneously with the existing image-text system of endoscopy to compare the practicability, sensitivity and specificity of AI-assisted diagnosis model in the diagnosis of digestive tract diseases, and focus on the quality control of endoscopic examination.


Clinical Trial Description

Digestive endoscopy center of the second affiliated hospital of medical college of zhejiang university and engineers of naki medical co., ltd. in Hong Kong independently developed an ai-assisted diagnostic model of digestive endoscopy in the early stage, namely the deep learning model。The deep learning model through the early stage of the study, is able to identify lesions of colon polyps, colorectal cancer, colorectal apophysis lesions, colonic diverticulum, ulcerative colitis, gastric ulcer, gastric polyps, submucosal uplift, reflux esophagitis, esophageal ulcer, esophageal polyp, esophageal erosion, esophageal ectopic gastric mucosa and esophagus varicosity, esophageal cancer, esophageal papilloma, etc.The sensitivity for the diagnosis of some diseases, such as colon polyps, is 99%. On the one hand, this auxiliary diagnostic model can guide endoscopic examination for beginners; on the other hand, it can improve the detection rate of lesions and reduce the rate of missed diagnosis; on the other hand, the overall operating efficiency of the endoscopic center is improved, which is conducive to the quality control of endoscopic examination. Now the AI-assisted diagnostic model has been further improved, and it is planned to carry out further clinical verification in the digestive endoscopy center of our hospital. It is connected to the endoscopic system of our hospital and used simultaneously with the existing image-text system of endoscopy to compare the practicability, sensitivity and specificity of AI-assisted diagnosis model in the diagnosis of digestive tract diseases, and focus on the quality control of endoscopic examination. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04071678
Study type Observational
Source Second Affiliated Hospital, School of Medicine, Zhejiang University
Contact Wang J An, Dr
Phone 057187783759
Email HREC2013@126.com
Status Recruiting
Phase
Start date August 1, 2019
Completion date December 30, 2021

See also
  Status Clinical Trial Phase
Completed NCT04589078 - Polyp REcognition Assisted by a Device Interactive Characterization Tool - The PREDICT Study
Completed NCT03857438 - Correlation of Audiovisual Features With Clinical Variables and Neurocognitive Functions in Bipolar Disorder, Mania
Completed NCT04735055 - Artificial Intelligence Prediction for the Severity of Acute Pancreatitis
Not yet recruiting NCT05452993 - Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography N/A
Not yet recruiting NCT04337229 - Evaluation of Comfort Behavior Levels of Newborns With Artificial Intelligence Techniques N/A
Completed NCT05687318 - A Clinical Trial of the Effectiveness and Safety of Software Assisting Diagnose the Intestinal Polyp Digestive Endoscopy by Analysis of Colonoscopy Medical Images From Electronic Digestive Endoscopy Equipment N/A
Recruiting NCT06051682 - Optimization of the Diagnosis of Bone Fractures in Patients Treated in the Emergency Department by Using Artificial Intelligence for Reading Radiological Images in Comparison With Traditional Reading by the Emergency Doctor. N/A
Not yet recruiting NCT06039917 - Effect of the Automatic Surveillance System on Surveillance Rate of Patients With Gastric Premalignant Lesions N/A
Not yet recruiting NCT06362629 - AI App for Management of Atopic Dermatitis N/A
Recruiting NCT06059378 - Real-life Implementation of an AI-based Optical Diagnosis N/A
Recruiting NCT06164002 - A I in the Prediction of Clinical Performance, Marginal Fit and Fracture Resistance of Vertical Versus Horizontal Margin Designs Fabricated With 2 Ceramic Materials N/A
Completed NCT05517889 - Repeatability and Stability of Healthy Skin Features on OCT
Completed NCT04816981 - AI-EBUS-Elastography for LN Staging N/A
Completed NCT05006092 - Surveillance Modified by Artificial Intelligence in Endoscopy (SMARTIE) N/A
Recruiting NCT04535466 - Diagnosis Predictive Modle for Dense Density Breast Tissue Based on Radiomics
Enrolling by invitation NCT04719117 - Retrograde Cholangiopancreatography AI Assisted System Validation on Effectiveness and Safety
Completed NCT04399590 - Comparing the Number of False Activations Between Two Artificial Intelligence CADe Systems: the NOISE Study
Recruiting NCT04126265 - Artificial Intelligence-assisted Colonoscopy for Detection of Colon Polyps N/A
Recruiting NCT06255808 - Development of Assist Tool for Breast Examination Using the Principle of Ultrasonic Sensor
Recruiting NCT04131530 - Automatic Evaluation of Inflammation Activity in Ulcerative Colitis Using pCLE With Artificial Intelligence