Artificial Intelligence Clinical Trial
Official title:
A Randomized Controlled Multicenter Study of Artificial Intelligence Assisted Digestive Endoscopy
Digestive endoscopy center of the second affiliated hospital of medical college of zhejiang university and engineers of naki medical co., ltd. in Hong Kong independently developed an ai-assisted diagnostic model of digestive endoscopy in the early stage, namely the deep learning model.The deep learning model through the early stage of the study, is able to identify lesions of digest tract.The sensitivity for the diagnosis of some diseases, such as colon polyps, is 99%. On the one hand, this auxiliary diagnostic model can guide endoscopic examination for beginners; on the other hand, it can improve the detection rate of lesions and reduce the rate of missed diagnosis; on the other hand, the overall operating efficiency of the endoscopic center is improved, which is conducive to the quality control of endoscopic examination. Now the AI-assisted diagnostic model has been further improved, and it is planned to carry out further clinical verification in the digestive endoscopy center of our hospital. It is connected to the endoscopic system of our hospital and used simultaneously with the existing image-text system of endoscopy to compare the practicability, sensitivity and specificity of AI-assisted diagnosis model in the diagnosis of digestive tract diseases, and focus on the quality control of endoscopic examination.
Digestive endoscopy center of the second affiliated hospital of medical college of zhejiang university and engineers of naki medical co., ltd. in Hong Kong independently developed an ai-assisted diagnostic model of digestive endoscopy in the early stage, namely the deep learning model。The deep learning model through the early stage of the study, is able to identify lesions of colon polyps, colorectal cancer, colorectal apophysis lesions, colonic diverticulum, ulcerative colitis, gastric ulcer, gastric polyps, submucosal uplift, reflux esophagitis, esophageal ulcer, esophageal polyp, esophageal erosion, esophageal ectopic gastric mucosa and esophagus varicosity, esophageal cancer, esophageal papilloma, etc.The sensitivity for the diagnosis of some diseases, such as colon polyps, is 99%. On the one hand, this auxiliary diagnostic model can guide endoscopic examination for beginners; on the other hand, it can improve the detection rate of lesions and reduce the rate of missed diagnosis; on the other hand, the overall operating efficiency of the endoscopic center is improved, which is conducive to the quality control of endoscopic examination. Now the AI-assisted diagnostic model has been further improved, and it is planned to carry out further clinical verification in the digestive endoscopy center of our hospital. It is connected to the endoscopic system of our hospital and used simultaneously with the existing image-text system of endoscopy to compare the practicability, sensitivity and specificity of AI-assisted diagnosis model in the diagnosis of digestive tract diseases, and focus on the quality control of endoscopic examination. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04589078 -
Polyp REcognition Assisted by a Device Interactive Characterization Tool - The PREDICT Study
|
||
Completed |
NCT03857438 -
Correlation of Audiovisual Features With Clinical Variables and Neurocognitive Functions in Bipolar Disorder, Mania
|
||
Completed |
NCT04735055 -
Artificial Intelligence Prediction for the Severity of Acute Pancreatitis
|
||
Not yet recruiting |
NCT05452993 -
Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography
|
N/A | |
Not yet recruiting |
NCT04337229 -
Evaluation of Comfort Behavior Levels of Newborns With Artificial Intelligence Techniques
|
N/A | |
Completed |
NCT05687318 -
A Clinical Trial of the Effectiveness and Safety of Software Assisting Diagnose the Intestinal Polyp Digestive Endoscopy by Analysis of Colonoscopy Medical Images From Electronic Digestive Endoscopy Equipment
|
N/A | |
Recruiting |
NCT06051682 -
Optimization of the Diagnosis of Bone Fractures in Patients Treated in the Emergency Department by Using Artificial Intelligence for Reading Radiological Images in Comparison With Traditional Reading by the Emergency Doctor.
|
N/A | |
Not yet recruiting |
NCT06039917 -
Effect of the Automatic Surveillance System on Surveillance Rate of Patients With Gastric Premalignant Lesions
|
N/A | |
Not yet recruiting |
NCT06362629 -
AI App for Management of Atopic Dermatitis
|
N/A | |
Recruiting |
NCT06059378 -
Real-life Implementation of an AI-based Optical Diagnosis
|
N/A | |
Recruiting |
NCT06164002 -
A I in the Prediction of Clinical Performance, Marginal Fit and Fracture Resistance of Vertical Versus Horizontal Margin Designs Fabricated With 2 Ceramic Materials
|
N/A | |
Completed |
NCT05517889 -
Repeatability and Stability of Healthy Skin Features on OCT
|
||
Completed |
NCT04816981 -
AI-EBUS-Elastography for LN Staging
|
N/A | |
Completed |
NCT05006092 -
Surveillance Modified by Artificial Intelligence in Endoscopy (SMARTIE)
|
N/A | |
Recruiting |
NCT04535466 -
Diagnosis Predictive Modle for Dense Density Breast Tissue Based on Radiomics
|
||
Enrolling by invitation |
NCT04719117 -
Retrograde Cholangiopancreatography AI Assisted System Validation on Effectiveness and Safety
|
||
Completed |
NCT04399590 -
Comparing the Number of False Activations Between Two Artificial Intelligence CADe Systems: the NOISE Study
|
||
Recruiting |
NCT04126265 -
Artificial Intelligence-assisted Colonoscopy for Detection of Colon Polyps
|
N/A | |
Recruiting |
NCT06255808 -
Development of Assist Tool for Breast Examination Using the Principle of Ultrasonic Sensor
|
||
Recruiting |
NCT04131530 -
Automatic Evaluation of Inflammation Activity in Ulcerative Colitis Using pCLE With Artificial Intelligence
|