Clinical Trials Logo

Clinical Trial Summary

The purpose of this research study is to test whether differing levels of physical fitness affects patterns of motor dexterity and brain activity that have been shown to differ due to aging. Testing will take place at the Atlanta VA Medical Center and at Emory University.

Participants will be healthy adults within the target age range of 60-85 for the study. The study will require multiple visits over 15 months. There will be about 64 people volunteering for this study.


Clinical Trial Description

The U.S. Census reports over 14 million U.S. Veterans (>63%) are beyond mid-life (>55 years). Declines in upper extremity motor performance respective of strength and dexterity are well documented within this age cohort). Recent cross-sectional research has discovered that aging related motor deficits may be influenced by a loss of interhemispheric inhibition (IHI) between primary motor cortices. However, this loss may not be an inevitable consequence of aging. Work from previous VA OAA Predoctoral and CDA-1 awards have shown that aerobic fitness may serve to mitigate losses in interhemispheric inhibition assessed by both functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS). That is, individuals who are aerobically fit show higher levels of IHI and improved dexterity and reaction times.

In light of new evidence from the investigators' lab's recent cross-sectional studies, physical activity over the long term (at least 2-5 years) may serve to alter levels of IHI and improve motor performance in the upper extremity. Aerobic exercise may provide a mechanism (reduced loss of interhemispheric inhibition) that could serve to improve motor function, but the neural mechanism responsible for such effects remains unclear. Previous investigations of interhemispheric communication and exercise have been limited by nature of inquiry, as cross-sectional research cannot measure changes over time in participants. As such, it is currently unknown how exercise may directly affect levels of interhemispheric communication and motor performance.

Behavioral interventions (motor strength and coordination) have been shown to be effective in improving upper extremity motor performance in older adults, however the duration of these gains appear to be short-lived. After as little as a few weeks of detraining, motor strength and coordination in the upper extremity rapidly begins to return to pre-intervention levels. Evidence from exercise interventions assessing gait and locomotion have shown that exercise programs over a longer term (>6 months) are associated with improved proprioception, fewer falls and better balance. However, the comparison of outcomes of upper extremity function in elderly adults respective of exercise duration remains largely unexplored. In addition to comparing the effects of short-term exercise (3 months) versus behavioral training (3 months) on upper extremity function, the current proposal will evaluate if a longer-term (6 months) exercise program can maintain or enhance upper extremity function and associated levels of interhemispheric inhibition.

The current study proposes the next logical step in my line of research and directly investigates the effects of exercise in an intervention with sedentary older Veterans (50-80 years), a group most likely to exhibit aging-related motor deficits. The investigators propose to enroll 40 Veterans into an upper extremity dexterity improvement program involving behavioral and exercise components. The behavioral intervention is a muscle coordination training previously shown to improve unimanual motor performance in older adults. The exercise intervention is a supervised group cycling regimen. The figure below shows the study design. Interhemispheric communication will be assessed with fMRI, and TMS. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01787292
Study type Interventional
Source VA Office of Research and Development
Contact
Status Completed
Phase N/A
Start date January 14, 2013
Completion date August 1, 2019

See also
  Status Clinical Trial Phase
Completed NCT05433233 - Effects of Lifestyle Walking on Blood Pressure in Older Adults With Hypertension N/A
Recruiting NCT06032065 - Sequential Multiple Assessment Randomized Trial of Exercise for PAD: SMART Exercise for PAD (SMART PAD) Phase 3
Completed NCT05293730 - Trial of the Impact of the Electronic Frailty Integrated With Social Needs N/A
Recruiting NCT03932162 - Gene Expression Changes In Young and Geriatric Skin Early Phase 1
Completed NCT04064528 - Effects of Age on Amino Acid Delivery to Tendon N/A
Completed NCT03366129 - Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
Completed NCT06029920 - Influence of Overground Walking on Biomarkers, Cognitive Function, and Quality of Life in Elderly With Mild Cognitive Impairment N/A
Recruiting NCT05566938 - Study to Design a Precision Nutrition Strategy at a Group Level in the Elderly N/A
Recruiting NCT05543980 - Leg Heat Therapy in Elderly Individuals Phase 2
Completed NCT04894929 - Comprehensive Geriatric Assessment in the Monitoring of Functional Improvement N/A
Not yet recruiting NCT06071130 - Emotion, Aging, and Decision Making N/A
Enrolling by invitation NCT04641663 - Multi-target Dietary Supplement Tolerability in an Aging Population (MTDSST) N/A
Completed NCT04088006 - The Evaluation of Efficacy and Safety of Hyaluronic Acid Injection on Skin Moisturization and Elasticity N/A
Completed NCT03695081 - Patient Pathway Pharmacist - Optimal Drug-related Care N/A
Recruiting NCT05424263 - Acetate and Age-associated Arterial Dysfunction Phase 2
Completed NCT05601713 - Mitigating Heat-induced Physiological Strain and Discomfort in Older Adults Via Lower Limb Immersion and Neck Cooling N/A
Completed NCT04551339 - Zinc Versus Multivitamin Micronutrient Supplementation in the Setting of COVID-19 N/A
Recruiting NCT04997577 - Speech Perception and High Cognitive Demand N/A
Completed NCT05922475 - Efficacy of Pre-sleep or Post-exercise Protein During 12 Weeks of Resistance Exercise Training N/A
Completed NCT04015479 - Peanut Protein Supplementation to Augment Muscle Growth and Improve Markers of Muscle Quality and Health in Older Adults N/A