Clinical Trials Logo

Clinical Trial Summary

Musculoskeletal disorders and degeneration represent injuries or pain in the body's joint ligaments, tendons, muscles, nerves, and skeletal elements that support extremities, spine and related tissues. Direct injuries and aging contribute to breakdown and inflammation of these tissues, leading to debilitation and loss of function in these areas. This has major impact on quality of life, occupational/recreation limitations, and psychosocial implications.

Many therapies have been employed including medications, physical therapy, occupational therapy, and a variety of surgical interventions each of which have distinct limitations, often covering the issues versus providing actual healing and return to function. Many reports are now available utilizing self-healing options which include use of stem/stromal cellular therapy or biocellular treatments (either from adipose or marrow) using targeted placement of cells, matrix and platelet concentrates. Termed cellular or Biocellular therapy (typically optimized using ultrasound guidance). It is proposed that use of cellular isolates or cell-stroma derived from the largest deposit of these cells (adipose greater than marrow), may use in conjunction with targeted placement or as a stand alone methodology intravascular use.

This study is designed as a interventional means to examine the safety and efficacy of the use of cellular and tissue stromal vascular fraction in musculoskeletal pain, dysfunction degeneration or inflammatory disorders.


Clinical Trial Description

Musculoskeletal disorders and degeneration represent injuries or pain in the body's joint ligaments, tendons, muscles, nerves, and skeletal elements that support extremities, spine and related tissues. Direct injuries and aging contribute to breakdown and inflammation of these tissues, leading to debilitation and loss of function in these areas. This has major impact on quality of life, occupational/recreation limitations, and psychosocial implications.

Many therapies have been employed including medications, physical therapy, occupational therapy, and a variety of surgical interventions each of which have distinct limitations, often covering the issues versus providing actual healing and return to function. Many reports are now available utilizing self-healing options which include use of stem/stromal cells (either from adipose or marrow) using targeted placement of cells, matrix and platelet concentrates. This is termed Biocellular therapy, and typically is optimized by use of ultrasound guidance. It is proposed that use of cellular isolates derived from the largest deposit of these cells (adipose greater than marrow), may use in conjunction with targeted placement or as a stand alone methodology of parenteral use.

This study is designed as a interventional means to examine the safety and efficacy of the use of cellular stromal vascular fraction (cSVF) in musculoskeletal pain, dysfunction degeneration or inflammatory disorders. The important cellular components represent, not the adipocyte, but the heterogeneous cell group associated with the peri-vasculature. The group does include certain cells referred to as "stem" or "stromal" cells, and are considered key elements of cellular and biocellular treatments. The carrier microvascular tissue, adipose, has been shown to not participate in wound healing or cellular replacement per se. It is well established that those perivascular (adventitial) cell types are found in essentially all tissues of the body, but in highest numbers in the easily accessed depots with the subdermal fat. It is proposed that areas of these groups are responded to as a result of "signaling" to permit a chemotactic request for needed growth factors and cytokines which effectively contribute to the healing capability at failing or damaged sites. This Trial will investigate the safety/efficacy of either combining specific targeting (ultrasound) with and/or without systemic parenteral route introduction.

This study includes closed syringe, disposable microcannula harvesting of subdermal fat tissues for obtaining the native perivascular stromal elements (extracellular matrix (ECM) and periadventitial cells shown to be multipotent (in potentials), incubation, digestion and isolation of cSVF. This isolated and concentration of stem/stromal cellular pellet (without actual extracellular matrix or stromal scaffolding elements) is then suspended in 500 cc sterile Normal Saline (NS) and deployed via peripheral intravenous route. Evaluations of safety issues are measured at intervals (both severe and non-severe categories) and by ultrasound and imaging studies.

Biocellular treatments are defined as use of tissue stromal vascular fraction (tSVF) obtained within adipose tissue complex (ATC), combined with high density platelet rich plasma (HD PRP) concentrated from standard blood draw. Concentration in FDA approved platelet concentrate devices to achieve levels of >4 times patient's own measured baseline levels. Such concentrates have been shown to provide important growth factors and cytokines (signal proteins) naturally involved in wound healing and repair functions. A form of Cell-Enriched Biocellular Therapy (CEBT) is available as a component of this study, in which the tSVF + HD PRP can be enhanced in cellular numbers via the process of isolating and concentrating cSVF discussed above. Many small case series and case reports have been published in the peer reviewed medical literature which suggest that these interventions are both safe and effective at relieving musculoskeletal disorders included in the study.

This study in intended to provide evidence of a non-drug safety and efficacy using both of these interventions. Evaluation and tracking of adverse events or severe adverse events (SAE) will be tracked according to intervals described. Examination of the optimal numbers of cells, viability of such cells, and evaluation of the efficacy will be statistically studied reported relative outcomes. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03090672
Study type Interventional
Source Regeneris Medical
Contact Ryan JP Welter, MD, PhD
Phone 508.345.5492
Email r.welter@regenerismedical.com
Status Recruiting
Phase N/A
Start date March 11, 2017
Completion date December 31, 2022

See also
  Status Clinical Trial Phase
Completed NCT02536833 - A Study Evaluating the Safety, Tolerability, and Efficacy of SM04690 Injected in the Target Knee Joint of Moderately to Severely Symptomatic Osteoarthritis Subjects Phase 2
Recruiting NCT03014037 - Comparing Mesenchymal Stem Cell Counts in Unilateral vs. Bilateral Posterior Superior Iliac Spine Bone Marrow Aspiration N/A
Recruiting NCT03644615 - A Mindfulness Program (MBSR) in the Management of Symptomatic Hip and Knee Osteoarthritis N/A
Recruiting NCT03167502 - Performance in Walking in Osteoarthritis Patients N/A
Recruiting NCT02723929 - Effects of tDCS and tUS on Pain Perception in OA of the Knee N/A
Recruiting NCT02923700 - Leukocyte-rich PRP vs Leukocyte-poor PRP for the Treatment of Knee Cartilage Degeneration: a Randomized Controlled Trial Phase 4
Recruiting NCT02912429 - Onlay vs. Inlay Patellofemoral Arthroplasty N/A
Recruiting NCT02666443 - Low Dose Dexamethasone in Supraclavicular Blocks N/A
Recruiting NCT02838069 - A Study Evaluating the Efficacy of a Single Injection Autologous Adipose Derived Mesenchymal Stromal Cells in Patients With Knee Osteoarthritis Phase 2
Recruiting NCT02818894 - Spinals in THA (Total Hip Arthroplasty) N/A
Active, not recruiting NCT02951026 - An Observational Study Evaluating the Safety, Tolerability, and Efficacy of Treatment of SM04690 or Placebo Previously Injected in the Target Knee Joint of Subjects With Moderately to Severely Symptomatic Osteoarthritis
Withdrawn NCT02921594 - Kinematic Comparison of Vanguard XP and Vanguard CR Total Knee Arthroplasties N/A
Terminated NCT02820766 - Journey II BCS CMS Total Knee System Compared to Other PS Total Knee Systems in PT Setting N/A
Recruiting NCT02544620 - Out Patient Surgery for Total Knee and Hip Replacement and Unicompartmental Knee Replacement - a Feasibility Study N/A
Recruiting NCT02650856 - Blood Loss Reduction After Total Knee Arthroplasty. A Comparison Between Topical Tranexamic Acid and Platelet Rich Plasma Phase 3
Completed NCT02230956 - BOTOX® Efficacy and Safety in the Treatment of Knee Osteoarthritis Phase 2
Recruiting NCT02241408 - Outcomes Data of Adipose Stem Cells to Treat Osteoarthritis
Recruiting NCT02413996 - Effects of Virtual Reality Rehabilitation in Patients With Total Knee Arthroplasty Phase 3
Completed NCT02314832 - Risk of Falling After CFNB Versus ACB N/A
Completed NCT02417610 - Comparative Assessment of Viscosupplementation With Polynucleotides and Hyaluronic Acid N/A