Clinical Trials Logo

Clinical Trial Summary

The major problem in stroke survivors that is being addressed in this research project is walking asymmetry, i.e., difference between the legs during walking (e.g. steps on the more affected side are longer than the other). A potential solution to this problem is using new technology like virtual reality during walking training to make stroke survivors have a better sense of their asymmetry. A second problem that we aim to address in this study is whether asymmetry is accurately felt by the stroke survivors and how we can address it. Our ongoing work on the effects of virtual reality on learning new walking tasks in stroke survivors indicates that virtual reality maybe particularly important for those with walking asymmetry. In this study, we plan to recruit stroke survivors who have such asymmetries during walking and have them learn a new walking task in virtual reality. We will also test the stroke survivors to determine if there is a relationship between how well they learn the new task with their ability to feel asymmetry accurately.


Clinical Trial Description

Stroke survivors show a deterioration in bilateral coordination during gait that impacts functional mobility and quality of life. Such deterioration includes spatial (e.g. step length) and temporal (e.g. step time) inter-limb asymmetries during walking (gait asymmetry). While restoration of gait symmetry through adaptive exercise as in split-belt training is an answer, it is compounded by deficits of perception that is common in stroke survivors. One solution to this problem is the use of augmented visual feedback such as virtual reality (VR). Such augmented visual inputs during training can help remove sensory conflicts that commonly exist during gait rehabilitation (e.g. static visual input versus motion perception through proprioceptive input during treadmill walking). The PI's ongoing research investigating the effects of VR on gait adaptation in stroke survivors indicates that the impact of VR is dependent on the subject's baseline gait asymmetry such that the effect of VR is potentially higher in those who have large baseline asymmetries. Therefore, in the current proposal, to determine if this hypothesis is correct, chronic stroke survivors who are above and below a specific asymmetry threshold will be recruited and assessed for the effect of VR on a split-belt treadmill paradigm. In the second aim, the effect of VR on the transfer of split-belt adaptation to a preferred walking trial will be assessed. Since stroke survivors also suffer from major perceptual deficits related to symmetry, in the third aim, the effect of VR on gait adaptation on four groups of stroke survivors will be analyzed those with deficits only in perceiving visual asymmetry, only gait asymmetry, both deficits or neither. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03787693
Study type Interventional
Source University of Nebraska
Contact Mukul Mukherjee, PhD
Phone 402-554-3351
Email mmukherjee@unomaha.edu
Status Recruiting
Phase N/A
Start date July 1, 2018
Completion date January 1, 2025

See also
  Status Clinical Trial Phase
Recruiting NCT04043052 - Mobile Technologies and Post-stroke Depression N/A
Completed NCT04034069 - Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial N/A
Completed NCT04101695 - Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects N/A
Suspended NCT03869138 - Alternative Therapies for Improving Physical Function in Individuals With Stroke N/A
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Completed NCT00391378 - Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS) N/A
Recruiting NCT06204744 - Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial N/A
Active, not recruiting NCT06043167 - Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
Enrolling by invitation NCT04535479 - Dry Needling for Spasticity in Stroke N/A
Completed NCT03985761 - Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke N/A
Recruiting NCT00859885 - International PFO Consortium N/A
Recruiting NCT06034119 - Effects of Voluntary Adjustments During Walking in Participants Post-stroke N/A
Completed NCT03622411 - Tablet-based Aphasia Therapy in the Chronic Phase N/A
Completed NCT01662960 - Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke N/A
Recruiting NCT05854485 - Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke N/A
Active, not recruiting NCT05520528 - Impact of Group Participation on Adults With Aphasia N/A
Active, not recruiting NCT03366129 - Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
Completed NCT03281590 - Stroke and Cerebrovascular Diseases Registry
Completed NCT05805748 - Serious Game Therapy in Neglect Patients N/A
Recruiting NCT05993221 - Deconstructing Post Stroke Hemiparesis