Clinical Trials Logo

Clinical Trial Summary

Stroke (795,000/year in the US and 30 million existing stroke survivors in the world) damages brain neural structures that control coordinated upper limb movement. To most effectively target the brain damage, interventions should be directed so as to restore brain control serving coordination of peripheral neuromuscular function. Currently, there is a lack of a transformative intervention strategy, and only limited efficacy is seen in response to neural rehabilitation that is only peripherally-directed (limbs e.g.) or only directed at the brain. This study will employ a novel neural feedback approach with a closed-loop, real-time paradigm to engage and retrain existing brain function after stroke. Real-time functional magnetic resonance imaging (rtfMIR) provides neural feedback with the advantage of precisely identifying the location of brain activity for multiple cognitive and emotional tasks. However, the rtfMRI is costly and precludes motor learning that requires sitting and engaging the upper limb in complex motor tasks during imaging acquisition. In contrast, real-time functional near-infrared spectroscopy (rtfNIRS), although not as spatially precise as rtfMRI, offers a low-cost, portable solution to provide brain neural feedback during motor learning. This proposal will utilize both technologies in a hybrid, sequential motor learning protocol. Moreover, the study protocol will also simultaneously involve both central effective signals (through neural feedback) and peripheral affective signals by employing neutrally-triggered functional electrical stimulation (FES)-assisted coordination practice, which produces peripherally-induced affective signals from muscle and joint receptors. This novel combination intervention protocol will engage the central nervous system, motor effective pathway training along with induction of affective signal production (FES-assisted practice), all of which will be implemented within the framework of evidence-based motor learning principles.


Clinical Trial Description

This study aims to develop and test an innovative protocol for recovery of wrist extension after stroke, using a combination of rtfMRI, rtfNIRS, FES, and motor learning.

Aim I. Test the innovative coordination training protocol of combination rtfMRI/rtfNIRS central neural feedback and peripherally-directed, neurally-triggered FES-assisted coordination practice implemented within a framework of motor learning principles.

Hypothesis 1. Chronic stroke survivors will show significant improvement in upper limb function in response to the combined rtfMRI/rtfNIRS central neural feedback; peripherally-directed FES-assisted coordination practice of wrist and finger extension; and whole arm/hand motor learning (Primary measure: Pre-/post-treatment change score in Arm Motor Abilities Test - function domain (AMAT - F); secondary measure: Pre/post-treatment change score in Fugl-Meyer upper limb coordination. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02856035
Study type Interventional
Source VA Office of Research and Development
Contact
Status Completed
Phase N/A
Start date January 1, 2017
Completion date September 28, 2018

See also
  Status Clinical Trial Phase
Recruiting NCT04043052 - Mobile Technologies and Post-stroke Depression N/A
Suspended NCT03869138 - Alternative Therapies for Improving Physical Function in Individuals With Stroke N/A
Completed NCT04101695 - Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects N/A
Completed NCT04034069 - Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial N/A
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Completed NCT00391378 - Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS) N/A
Recruiting NCT06204744 - Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial N/A
Active, not recruiting NCT06043167 - Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
Enrolling by invitation NCT04535479 - Dry Needling for Spasticity in Stroke N/A
Completed NCT03985761 - Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke N/A
Recruiting NCT00859885 - International PFO Consortium N/A
Recruiting NCT06034119 - Effects of Voluntary Adjustments During Walking in Participants Post-stroke N/A
Completed NCT03622411 - Tablet-based Aphasia Therapy in the Chronic Phase N/A
Completed NCT01662960 - Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke N/A
Recruiting NCT05854485 - Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke N/A
Active, not recruiting NCT05520528 - Impact of Group Participation on Adults With Aphasia N/A
Active, not recruiting NCT03366129 - Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
Completed NCT03281590 - Stroke and Cerebrovascular Diseases Registry
Completed NCT05805748 - Serious Game Therapy in Neglect Patients N/A
Recruiting NCT05993221 - Deconstructing Post Stroke Hemiparesis