Respiratory Failure Clinical Trial
— COFICOHFOTOfficial title:
Randomized Crossover Trial To Compare Closed-loop FiO2 Controller With Conventional Control of FiO2 During High Flow Oxygen Treatment In Pediatric Intensive Care Unit Patients
Verified date | January 2023 |
Source | Dr. Behcet Uz Children's Hospital |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Recently, high flow oxygen therapy (HFOT) is becoming more popular in the treatment of any kind of respiratory failure. Pediatric mechanical ventilation consensus conference (PEMVECC) guidelines suggest measuring oxygen saturation by pulse oximetry (SpO2) in all ventilated children and furthermore to measure partial arterial oxygen pressure (PaO2) in moderate-to-severe disease in order to prevent excessive use of oxygen while preventing hypoxemia and hyperoxemia. This study aims to compare the safety and efficacy of a closed-loop FiO2 controller (CLOC) with conventional control of FiO2 during HFOT of pediatric patients in a pediatric intensive care unit (PICU). The hypothesis of this study is: Close-loop FiO2 controller increases the time spent within clinically targeted SpO2 ranges and decreases the time spent outside clinical target SpO2 ranges as compared to manual oxygen control in PICU patients treated with HFOT.
Status | Completed |
Enrollment | 23 |
Est. completion date | February 1, 2022 |
Est. primary completion date | February 1, 2022 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 1 Month to 18 Years |
Eligibility | Inclusion Criteria: - Pediatric patients older than 1 month and younger than18 years of age; hospitalized at the PICU with the intention of treatment with HFOT at least for the upcoming 5 hours - Requiring FiO2 = 25% to keep SpO2 in the target ranges defined by the clinician - Written informed consent signed and dated by the patient or one relative in case that the patient is unable to consent, after full explanation of the study by the investigator and prior to study participation Exclusion Criteria: - Patient with indication for immediate noninvasive ventilation (NIMV), or invasive mechanical ventilation (IMV) - Hemodynamic instability defined as a need of continuous infusion of epinephrine or norepinephrine > 1 mg/h - Low quality on the SpO2 measurement using finger and ear sensor (quality index below 60% on the SpO2 sensor, which is displayed by a red or orange colour bar) - Severe acidosis (pH = 7.25) - Pregnant woman - Patients deemed at high risk for the need of mechanical ventilation within the next 5 hours - Patients deemed at high risk for the need of transportation from PICU to another ward, diagnostic unit or any other hospital - Diseases or conditions which may affect transcutaneous SpO2 measurement such as chronic or acute dyshemoglobinemia: methemoglobinemia, carbon monoxide (CO) poisoning, sickle cell disease - Formalized ethical decision to withhold or withdraw life support - Patient included in another interventional research study under consent - Patient already enrolled in the present study in a previous episode of acute respiratory failure |
Country | Name | City | State |
---|---|---|---|
Turkey | Erzurum Regional Research and Training Hospital | Erzurum | |
Turkey | The Health Sciences University Izmir Behçet Uz Child Health and Diseases Research and Training Hospital | Izmir |
Lead Sponsor | Collaborator |
---|---|
Dr. Behcet Uz Children's Hospital |
Turkey,
Kneyber MCJ, de Luca D, Calderini E, Jarreau PH, Javouhey E, Lopez-Herce J, Hammer J, Macrae D, Markhorst DG, Medina A, Pons-Odena M, Racca F, Wolf G, Biban P, Brierley J, Rimensberger PC; section Respiratory Failure of the European Society for Paediatric and Neonatal Intensive Care. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). Intensive Care Med. 2017 Dec;43(12):1764-1780. doi: 10.1007/s00134-017-4920-z. Epub 2017 Sep 22. — View Citation
Lui K, Jones LJ, Foster JP, Davis PG, Ching SK, Oei JL, Osborn DA. Lower versus higher oxygen concentrations titrated to target oxygen saturations during resuscitation of preterm infants at birth. Cochrane Database Syst Rev. 2018 May 4;5(5):CD010239. doi: 10.1002/14651858.CD010239.pub2. — View Citation
Maiwald CA, Niemarkt HJ, Poets CF, Urschitz MS, Konig J, Hummler H, Bassler D, Engel C, Franz AR; FiO2-C Study Group. Effects of closed-loop automatic control of the inspiratory fraction of oxygen (FiO2-C) on outcome of extremely preterm infants - study protocol of a randomized controlled parallel group multicenter trial for safety and efficacy. BMC Pediatr. 2019 Oct 21;19(1):363. doi: 10.1186/s12887-019-1735-9. — View Citation
Mitra S, Singh B, El-Naggar W, McMillan DD. Automated versus manual control of inspired oxygen to target oxygen saturation in preterm infants: a systematic review and meta-analysis. J Perinatol. 2018 Apr;38(4):351-360. doi: 10.1038/s41372-017-0037-z. Epub 2018 Jan 2. — View Citation
Reynolds PR, Miller TL, Volakis LI, Holland N, Dungan GC, Roehr CC, Ives K. Randomised cross-over study of automated oxygen control for preterm infants receiving nasal high flow. Arch Dis Child Fetal Neonatal Ed. 2019 Jul;104(4):F366-F371. doi: 10.1136/archdischild-2018-315342. Epub 2018 Nov 21. — View Citation
van Kaam AH, Hummler HD, Wilinska M, Swietlinski J, Lal MK, te Pas AB, Lista G, Gupta S, Fajardo CA, Onland W, Waitz M, Warakomska M, Cavigioli F, Bancalari E, Claure N, Bachman TE. Automated versus Manual Oxygen Control with Different Saturation Targets and Modes of Respiratory Support in Preterm Infants. J Pediatr. 2015 Sep;167(3):545-50.e1-2. doi: 10.1016/j.jpeds.2015.06.012. Epub 2015 Jul 2. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Percentage of time spent in optimal SpO2 range | The optimal SpO2 range will be defined according to the SpO2 targets determined by the clinician. | 2 hours | |
Secondary | Percentage of time spent in sub-optimal SpO2 range | SpO2 values outside the optimal range but still within an acceptable limit (2-3 percent above and below the optimal range) | 2 hours | |
Secondary | Mean FiO2 | Mean fraction of inspired oxygen | 2 hours | |
Secondary | Mean SpO2/FiO2 | Mean SpO2/FiO2 oxygen | 2 hours | |
Secondary | Number of manual adjustments | Frequency of manual adjustments of FiO2 | 2 hours | |
Secondary | Number of alarms | Frequency of alarms | 2 hours | |
Secondary | Percentage of time with SpO2 signal available | Time with SpO2 signal available | 2 hours | |
Secondary | Percentage of time with SpO2 below 88 and 85 percent | Duration of time with SpO2 <85 percent and <88 percent, respectively | 2 hours | |
Secondary | Number of events with SpO2 below 88 and 85 percent | Frequency of SpO2 decreases <85 percent and <88 percent, respectively | 2 hours | |
Secondary | Percentage of time with FiO2 below 40 percent, 60 percent and 100 percent | Percentage of time that FiO2 is <40 percent, 60 percent and 100 percent, respectively | 2 hours |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03909854 -
Pragmatic Investigation of Volume Targeted Ventilation-1
|
N/A | |
Recruiting |
NCT03662438 -
HOPE (Home-based Oxygen [Portable] and Exercise) for Patients on Long Term Oxygen Therapy (LTOT)
|
N/A | |
Recruiting |
NCT05308719 -
Nasal Oxygen Therapy After Cardiac Surgery
|
N/A | |
Recruiting |
NCT05535543 -
Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
|
||
Completed |
NCT04030208 -
Evaluating Safety and Efficacy of Umbulizer in Patients Requiring Intermittent Positive Pressure Ventilation
|
N/A | |
Recruiting |
NCT04668313 -
COVID-19 Advanced Respiratory Physiology (CARP) Study
|
||
Recruiting |
NCT04542096 -
Real Time Evaluation of Dynamic Changes of the Lungs During Respiratory Support of VLBW Neonates Using EIT
|
||
Recruiting |
NCT05883137 -
High-flow Nasal Oxygenation for Apnoeic Oxygenation During Intubation of the Critically Ill
|
||
Completed |
NCT04505592 -
Tenecteplase in Patients With COVID-19
|
Phase 2 | |
Completed |
NCT03943914 -
Early Non-invasive Ventilation and High-flow Nasal Oxygen Therapy for Preventing Delayed Respiratory Failure in Hypoxemic Blunt Chest Trauma Patients.
|
N/A | |
Active, not recruiting |
NCT03472768 -
The Impact of Age-dependent Haptoglobin Deficiency on Plasma Free Hemoglobin Levels During Extracorporeal Membrane Oxygenation Support
|
||
Not yet recruiting |
NCT04538469 -
Absent Visitors: The Wider Implications of COVID-19 on Non-COVID Cardiothoracic ICU Patients, Relatives and Staff
|
||
Not yet recruiting |
NCT02542423 -
Endocan Predictive Value in Postcardiac Surgery Acute Respiratory Failure.
|
N/A | |
Completed |
NCT02265198 -
Relationship of Pulmonary Contusion to Pulmonary Inflammation and Incidence of Acute Respiratory Distress Syndrome
|
N/A | |
Completed |
NCT02105298 -
Effect of Volume and Type of Fluid on Postoperative Incidence of Respiratory Complications and Outcome (CRC-Study)
|
N/A | |
Completed |
NCT01885442 -
TryCYCLE: A Pilot Study of Early In-bed Leg Cycle Ergometry in Mechanically Ventilated Patients
|
N/A | |
Completed |
NCT01659268 -
Performance of Baccalaureate Nursing Students in Insertion of Laryngeal Mask: a Trial in Mannequins
|
N/A | |
Completed |
NCT02814994 -
Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients
|
N/A | |
Completed |
NCT01204281 -
Proportional Assist Ventilation (PAV) in Early Stage of Critically Ill Patients
|
Phase 4 | |
Terminated |
NCT01333059 -
Cycling of Sedative Infusions in Critically Ill Pediatric Patients
|
N/A |