Clinical Trials Logo

Clinical Trial Summary

Fluid responsiveness (FR)refers to the ability of heart to increase its stroke volume in response to volume load.Low tidal volume and high PEEP exerts contrast effect on the prediction of fluid responsiveness, the aim of this study is to compare the relative predicting power of the dynamic preload indicator (PPV, SVV), passive leg raising test, and pleth variability index (PVI) on the fluid responsiveness of acute respiratory distress syndrome ventilated with various PEEP levels or various tidal volumes.


Clinical Trial Description

In septic critically ill mechanically ventilated patients with acute circulatory failure, inadequate volume resuscitation leads to multiple organ failure. Early goal-directed therapy emphasizes early and aggressive hemodynamic support in patients with severe sepsis and septic shock. On the other hand, because of increased microvascular permeability and capillary leakage, conservative fluid management and more aggressive restriction in fluid accumulation to reduce lung water and tissue edema has been suggested by acute respiratory distress syndrome net. Fluid responsiveness refers to the ability of the heart to increase its stroke volume in response to volume load. Accurately predicting volume responsiveness will be beneficial in obviating the need for unnecessary fluid loading, and in detecting patients who may benefit from a volume load.

By inducing cyclic changes in pleural and transpulmonary pressure, mechanical ventilation results in cyclic changes in the preload and afterload, and therefore, the cyclic variation in systolic and pulse pressure. Recently, a systemic review concluded that dynamic preload indicator [pulse pressure variation (PPV), stroke volume variation (SVV)] are highly accurate in predicting volume responsiveness in critically ill patients. However, this technique is limited to patients who receive controlled ventilation with adequate tidal volume (> 8 ml/Kg) and sedation or paralysis is needed to abolish the spontaneous ventilation.

For acute respiratory distress syndrome patients, protective ventilatory strategy suggested low tidal volume to 6 ml/Kg. On the contrary, high PEEP needed for acute respiratory distress syndrome to prevent VALI induces a leftward shift to the steep pat of the Frank-Starling curve and increase the fluid responsiveness. Whether the dynamic preload indicators (PPV and SVV) are still effective in acute respiratory distress syndrome patients for predicting fluid responsiveness remain controversial.

Passive leg raising (PLR), by inducing a gravitational transfer of blood from the lower part of the body toward the central circulatory compartment, can be considered as a brief "self volume challenge". Recently, a systemic review and meta-analysis concluded that PLR-induced changes in cardiac output reliably predict fluid responsiveness regardless of ventilation mode, underlying cardiac rhythm and technique of measurement and can be recommended for routine assessment of fluid responsiveness in the majority of ICU population. More importantly, this prediction remains very valuable in patients with cardiac arrhythmias or spontaneous breathing activity.

Respiratory variations in the pulse oximeter plethysmographic waveform amplitude (ΔPOP) have been shown to be able to predict fluid responsiveness in mechanically ventilated patients. The main advantage of this index is that it is noninvasive, widely available, and inexpensive. Perfusion index (PI), the percentage between the infrared pulsatile and nonpulsatile signal, reflects the amplitude of the pulse oximeter waveform. Recently, Pleth Variability Index (PVI), derived from perfusion index, affords a continuous monitoring of ΔPOP. PVI has been shown to be correlated to ΔPOP and PPV and has been demonstrated to be equivalent to SVV as a predictor of fluid responsiveness in ventilated patients during major surgery. However, whether the PVI can predict the fluid responsiveness in acute respiratory distress syndrome necessitating low tidal volume and high PEEP is not clear.

Because of the aforementioned contrasting effects of low tidal volume and high PEEP on the prediction of fluid responsiveness, the aim of this study is to compare the relative predicting power of the dynamic preload indicator (PPV, SVV), passive leg raising test, and PVI on the fluid responsiveness of acute respiratory distress syndrome ventilated with various PEEP levels or various tidal volumes. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01716962
Study type Observational
Source Chang Gung Memorial Hospital
Contact
Status Unknown status
Phase N/A
Start date November 2012

See also
  Status Clinical Trial Phase
Recruiting NCT01990456 - Strategies for Optimal Lung Ventilation in ECMO for ARDS: The SOLVE ARDS Study N/A
Completed NCT01167621 - Changes in Refractory Acute Respiratory Distress Syndrome (ARDS) Patients Under High Frequency Oscillation-ventilation N/A
Terminated NCT00233207 - IC14 Antibodies to Treat Individuals With Acute Lung Injury Phase 2
Completed NCT00029328 - Etanercept for Non-Infectious Lung Injury Following Bone Marrow Transplantation Phase 1/Phase 2
Recruiting NCT00004494 - Phase I Study of Vasoactive Intestinal Peptide in Patients With Acute Respiratory Distress Syndrome and Sepsis Phase 1
Completed NCT00000579 - Acute Respiratory Distress Syndrome Clinical Network (ARDSNet) Phase 3
Completed NCT02273687 - Time-motion-mode Ultrasound Diaphragm Measures in Patients With Acute Respiratory Distress in Emergency Department N/A
Recruiting NCT03424798 - Measuring Heart and Lung Function in Critical Care N/A
Recruiting NCT01992237 - Measuring Energy Expenditure in ECMO (Extracorporeal Membrane Oxygenation) Patients N/A
Completed NCT00719446 - Evaluating Health Outcomes and QOL After ALI Among Participants of the ALTA, OMEGA, EDEN, and SAILS ARDS Network Trials N/A
Completed NCT00236262 - Effect of Positive Expiratory Pressure on Right Ventricular Function in Patients With Respiratory Distress Syndrome N/A
Completed NCT00157144 - Australia and New Zealand Adult Extracorporeal Membrane Oxygenation (ECMO) Audit 2005 N/A
Completed NCT00300248 - Long-Term Results in Mechanically Ventilated Individuals With Acute Lung Injury/Acute Respiratory Distress Syndrome N/A
Completed NCT00141726 - Study of Enbrel (Etanercept) for the Treatment Sub-Acute Pulmonary Dysfunction After Allogeneic Stem Cell Transplant Phase 2
Recruiting NCT00465374 - A Validation/Interventional Study on Stress Index in Predicting Mechanical Stress in ARDS Patients Phase 3
Completed NCT00094406 - Carbon Monoxide to Prevent Lung Inflammation Phase 1
Recruiting NCT00605527 - Understanding the Role of Genes and Biomarkers in the Blood Clotting Process in Children With Acute Lung Injury N/A
Completed NCT00399581 - Comparison of Two Methods of High Frequency Oscillatory Ventilation in Individuals With Acute Respiratory Distress Syndrome Phase 2
Active, not recruiting NCT00458926 - Enhancing Utilization of Non-Invasive Positive Pressure Ventilation in Critical Care
Not yet recruiting NCT03368092 - Inhaled Dornase Alpha to Reduce Respiratory Failure After Severe Trauma Phase 3