Clinical Trials Logo

Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma clinical trials

View clinical trials related to Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma.

Filter by:

NCT ID: NCT03017820 Suspended - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

VSV-hIFNbeta-NIS in Treating Patients With Relapsed or Refractory Multiple Myeloma, Acute Myeloid Leukemia, or T-cell Lymphoma

Start date: April 4, 2017
Phase: Phase 1
Study type: Interventional

This phase I trial studies the best dose and side effects of recombinant vesicular stomatitis virus carrying the human NIS and IFN beta genes (VSV-hIFNbeta-sodium iodide symporter [NIS]) in treating patients with multiple myeloma, acute myeloid leukemia, or T-cell lymphoma that has come back or does not respond to treatment. A virus, called VSV-hIFNbeta-NIS, which has been changed in a certain way, may be able to kill cancer cells without damaging normal cells.

NCT ID: NCT03011814 Recruiting - Clinical trials for Recurrent Cutaneous T-Cell Non-Hodgkin Lymphoma

Durvalumab With or Without Lenalidomide in Treating Patients With Relapsed or Refractory Cutaneous or Peripheral T Cell Lymphoma

Start date: March 8, 2017
Phase: Phase 1/Phase 2
Study type: Interventional

This randomized phase I/II trial studies the best dose and side effects of durvalumab and to see how well it works with or without lenalidomide in treating patients with cutaneous or peripheral T cell lymphoma that has come back and does not respond to treatment. Monoclonal antibodies, such as durvalumab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving durvalumab and lenalidomide may work better in treating patients with cutaneous or peripheral T cell lymphoma.

NCT ID: NCT02342782 Recruiting - Clinical trials for Recurrent Cutaneous T-Cell Non-Hodgkin Lymphoma

Yttrium Y 90 Basiliximab and Combination Chemotherapy Before Stem Cell Transplant in Treating Patients With Mature T-cell Non-Hodgkin Lymphoma

Start date: June 8, 2015
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of yttrium Y 90 basiliximab when given together with standard combination chemotherapy before a stem cell transplant in treating patients with mature T-cell non-Hodgkin lymphoma. Radioactive substances linked to monoclonal antibodies, such as yttrium Y 90 basiliximab, can bind to cancer cells and give off radiation which may help kill cancer cells. Drugs used in chemotherapy, such as carmustine, cytarabine, etoposide, and melphalan (BEAM), work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving yttrium Y 90 basiliximab and chemotherapy before a stem cell transplant may help kill any cancer cells that are in the body and help make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. Stem cells that were collected from the patient's blood and stored before treatment are later returned to the patient to replace the blood-forming cells that were destroyed.

NCT ID: NCT02168140 Recruiting - Clinical trials for Recurrent Adult Acute Lymphoblastic Leukemia

CPI-613 and Bendamustine Hydrochloride in Treating Patients With Relapsed or Refractory T-Cell Non-Hodgkin Lymphoma or Hodgkin Lymphoma

Start date: September 2014
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of CPI-613 when given together with bendamustine hydrochloride in treating patients with relapsed or refractory T-cell non-Hodgkin lymphoma or Hodgkin lymphoma. CPI-613 may kill cancer cells by turning off their mitochondria, which are used by cancer cells to produce energy and are the building blocks needed to make more cancer cells. By shutting off mitochondria, CPI-613 may deprive the cancer cells of energy and other supplies needed to survive and grow. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CPI-613 with bendamustine hydrochloride may kill more cancer cells.

NCT ID: NCT01959477 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Dose Monitoring of Busulfan and Combination Chemotherapy in Hodgkin or Non-Hodgkin Lymphoma Undergoing Stem Cell Transplant

Start date: March 2014
Phase: Phase 0
Study type: Interventional

This clinical trial studies personalized dose monitoring of busulfan and combination chemotherapy in treating patients with Hodgkin or non-Hodgkin lymphoma undergoing stem cell transplant. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's peripheral blood or bone marrow and stored. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Monitoring the dose of busulfan may help doctors deliver the most accurate dose and reduce toxicity in patients undergoing stem cell transplant.

NCT ID: NCT01839916 Recruiting - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Donor T Cells After Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies

Start date: April 4, 2013
Phase: Phase 2
Study type: Interventional

This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.

NCT ID: NCT01805037 Recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Brentuximab Vedotin + Rituximab as Frontline Therapy for Pts w/ CD30+ and/or EBV+ Lymphomas

Start date: March 2013
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this study is to evaluate how safe and effective the combination of two different drugs (brentuximab vedotin and rituximab) is in patients with certain types of lymphoma. This study is for patients who have a type of lymphoma that expresses a tumor marker called CD30 and/or a type that is associated with the Epstein-Barr virus (EBV-related lymphoma) and who have not yet received any treatment for their cancer, except for dose-reduction or discontinuation (stoppage) of medications used to prevent rejection of transplanted organs (for those patients who have undergone transplantation). This study is investigating the combination of brentuximab vedotin and rituximab as a first treatment for lymphoma patients

NCT ID: NCT01800838 Completed - Clinical trials for Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma

Silicon Phthalocyanine 4 and Photodynamic Therapy in Stage IA-IIA Cutaneous T-Cell Non-Hodgkin Lymphoma

Start date: April 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of silicon phthalocyanine 4 and photodynamic therapy in treating patients with stage IA-IIA cutaneous T-cell non-Hodgkin lymphoma. Photodynamic therapy (PDT) uses a drug, silicon phthalocyanine 4, that becomes active when it is exposed to a certain kind of light. When the drug is active, cancer cells are killed. This may be effective against cutaneous T-cell non-Hodgkin lymphoma. Funding Source - FDA OOPD

NCT ID: NCT01769911 Withdrawn - Clinical trials for Recurrent Mantle Cell Lymphoma

Genetically Modified Peripheral Blood Stem Cell Transplant in Treating Patients With HIV-Associated Non-Hodgkin or Hodgkin Lymphoma

Start date: February 2015
Phase: N/A
Study type: Interventional

This clinical trial studies genetically modified peripheral blood stem cell transplant in treating patients with HIV-associated non-Hodgkin or Hodgkin lymphoma. Giving chemotherapy before a peripheral stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy or radiation therapy is then given to prepare the bone marrow for the stem cell transplant. Laboratory-treated stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy and radiation therapy

NCT ID: NCT01769222 Suspended - Clinical trials for Recurrent Mantle Cell Lymphoma

Ipilimumab and Local Radiation Therapy in Treating Patients With Recurrent Melanoma, Non-Hodgkin Lymphoma, Colon, or Rectal Cancer

Start date: February 2013
Phase: Phase 1/Phase 2
Study type: Interventional

This pilot phase I/II trial studies the side effects and best of dose ipilimumab when given together with local radiation therapy and to see how well it works in treating patients with recurrent melanoma, non-Hodgkin lymphoma, colon, or rectal cancer. Monoclonal antibodies, such as ipilimumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Radiation therapy uses high energy x rays to kill cancer cells. Giving monoclonal antibody therapy together with radiation therapy may be an effective treatment for melanoma, non-Hodgkin lymphoma, colon, or rectal cancer