Clinical Trials Logo

Recurrent Adult Burkitt Lymphoma clinical trials

View clinical trials related to Recurrent Adult Burkitt Lymphoma.

Filter by:

NCT ID: NCT02281279 Withdrawn - Clinical trials for Recurrent Mantle Cell Lymphoma

Rituximab, Romidepsin, and Lenalidomide in Treating Patients With Recurrent or Refractory B-cell Non-Hodgkin Lymphoma

Start date: October 2016
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of romidepsin and lenalidomide when combined with rituximab and to see how well this combination works in treating patients with B-cell non-Hodgkin lymphoma that has returned (recurrent) or did not respond to treatment (refractory). Monoclonal antibodies, such as rituximab, may block cancer growth in different ways by targeting certain cells. Romidepsin and lenalidomide may stop the growth of cancer cells by blocking enzymes needed for cell growth. Giving rituximab together with romidepsin and lenalidomide may be a better treatment for B-cell non-Hodgkin lymphoma.

NCT ID: NCT02168907 Terminated - Clinical trials for Recurrent Mantle Cell Lymphoma

CPI-613, Bendamustine Hydrochloride, and Rituximab in Treating Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma

Start date: December 2014
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of CPI-613 (6,8-bis[benzylthio]octanoic acid) when given together with bendamustine hydrochloride and rituximab in treating patients with B-cell non-Hodgkin lymphoma that has come back or has not responded to treatment. Drugs used in chemotherapy, such as 6,8-bis(benzylthio)octanoic acid and bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as rituximab, may find cancer cells and help kill them. Giving 6,8-bis(benzylthio)octanoic acid with bendamustine hydrochloride and rituximab may kill more cancer cells.

NCT ID: NCT02153580 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Cellular Immunotherapy Following Chemotherapy in Treating Patients With Recurrent Non-Hodgkin Lymphomas, Chronic Lymphocytic Leukemia, or B-Cell Prolymphocytic Leukemia

Start date: September 24, 2014
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of cellular immunotherapy following chemotherapy in treating patients with non-Hodgkin lymphomas, chronic lymphocytic leukemia, or B-cell prolymphocytic leukemia that has come back. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.

NCT ID: NCT02109224 Terminated - Clinical trials for Chronic Lymphocytic Leukemia

Ibrutinib in Treating Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma in Patients With HIV Infection

Start date: September 2014
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of ibrutinib in treating B-cell non-Hodgkin lymphoma that has returned or does not respond to treatment in patients with human immunodeficiency virus (HIV) infection. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether it is safe for patients with HIV infection to receive ibrutinib while also taking anti-HIV drugs.

NCT ID: NCT02037256 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Bortezomib and Filgrastim to Promote Stem Cell Mobilization in Patients With Non-Hodgkin Lymphoma or Multiple Myeloma

Start date: July 2011
Phase: N/A
Study type: Interventional

This clinical trial studies peripheral blood hemapoietic stem cell mobilization with the combination of bortezomib and G-CSF (filgrastim) in multiple myeloma and non-Hodgkin lymphoma patients.

NCT ID: NCT01959477 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Dose Monitoring of Busulfan and Combination Chemotherapy in Hodgkin or Non-Hodgkin Lymphoma Undergoing Stem Cell Transplant

Start date: March 2014
Phase: Phase 0
Study type: Interventional

This clinical trial studies personalized dose monitoring of busulfan and combination chemotherapy in treating patients with Hodgkin or non-Hodgkin lymphoma undergoing stem cell transplant. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's peripheral blood or bone marrow and stored. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Monitoring the dose of busulfan may help doctors deliver the most accurate dose and reduce toxicity in patients undergoing stem cell transplant.

NCT ID: NCT01925131 Completed - Clinical trials for Recurrent Adult Acute Lymphoblastic Leukemia

S1312, Inotuzumab Ozogamicin and Combination Chemotherapy in Treating Patients With Relapsed or Refractory Acute Leukemia

Start date: June 13, 2014
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of inotuzumab ozogamicin when given together with combination chemotherapy in treating patients with relapsed or refractory acute leukemia. Immunotoxins, such as inotuzumab ozogamicin, can find cancer cells that express cluster of differentiation (CD)22 and kill them without harming normal cells. Drugs used in chemotherapy, such as cyclophosphamide, vincristine sulfate, and prednisone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving inotuzumab ozogamicin together with combination chemotherapy may kill more cancer cells.

NCT ID: NCT01839916 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Donor T Cells After Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies

Start date: April 4, 2013
Phase: Phase 2
Study type: Interventional

This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.

NCT ID: NCT01815749 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Genetically Modified T-cell Infusion Following Peripheral Blood Stem Cell Transplant in Treating Patients With Recurrent or High-Risk Non-Hodgkin Lymphoma

Start date: October 8, 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of genetically modified T-cells following peripheral blood stem cell transplant in treating patients with recurrent or high-risk non-Hodgkin lymphoma. Giving chemotherapy before a stem cell transplant helps stop the growth of cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing the T cells from the donor cells before transplant may stop this from happening. Giving an infusion of the donor's T cells (donor lymphocyte infusion) later may help the patient's immune system see any remaining cancer cells as not belonging in the patient's body and destroy them (called graft-versus-tumor effect)

NCT ID: NCT01812005 Terminated - Clinical trials for Recurrent Mantle Cell Lymphoma

Alisertib With and Without Rituximab in Treating Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma

Start date: May 21, 2013
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well alisertib with and without rituximab works in treating patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Alisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving alisertib with and without rituximab may be an effective treatment for B-cell non-Hodgkin lymphoma