Clinical Trials Logo

Clinical Trial Summary

Multiparametric magnetic resonance imaging (mpMRI) of the prostate combines T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced imaging. Correlation with radical prostatectomy specimens has demonstrated that mpMRI has excellent sensitivity in detecting prostate cancers (PCa) with a Gleason score ≥7 and cancers with a Gleason 6 and a volume ≥0.5 cc. Nevertheless, its specificity is poor and there is large overlapping between the appearances of benign and malignant prostate lesions. As a result, the use of a 5-point subjective score has been widely encouraged to describe the level of suspicion of prostate lesions. This so-called 'Likert score' is a highly significant predictor of the malignant nature of prostate focal lesions. However, because there are no descriptions of specific criteria to be used in the scoring process, the Likert score relies heavily on the reader's experience.

In an attempt to standardize mpMRI interpretation, the European Society of Urogenital Radiology and the American College of Radiology recently endorsed the so-called Prostate Imaging-Reporting and Data System (PIRADS) score. The second version of this scoring system (PI-RADS v2 score) gave good results in characterizing prostate focal lesions. However, Inter-reader agreement remains moderate at best, even after training, and there is still a high-rate of false positives. These results have led some authors to suggest that there might be structural limits to the ability of any score based on MR imaging to allow detection of prostate cancer with high specificity.

Using quantitative magnetic resonance (MR) image features to characterize prostate lesions seen on mpMRI could improve interpretation standardization, and recently, several computer-aided diagnosis (CAD) systems combining various image features have shown promising results in characterizing prostate tissues. However, most CAD systems have been trained and evaluated on images from the same MR scanner. Unfortunately, quantification in MR imaging is limited by substantial inter-manufacturer variability in the calculation of quantitative image parameters. The quantitative thresholds defined for one manufacturer may therefore not be valid for another manufacturer. Of the many reported CAD systems, only few have shown robust results at cross-validation in datasets from different manufacturers.

We developed in Lyon a mpMRI CAD system for discriminating Gleason ≥7 cancers in the peripheral zone (PZ). That CAD system was trained using mpMRI from patients treated by radical prostatectomy. It combines the 10th percentile of the apparent diffusion coefficient (ADC_10th) and the time to the peak of enhancement (TTP) at dynamic contrast-enhanced (DCE) imaging. It provided good results when cross-validated in two datasets from two different manufacturers (General Electric and Philips). We then tested the CAD on a cohort of 130 patients who underwent mpMRI (General Electric or Philips MR unit) before prostate biopsy. Each MR lesion targeted at biopsy had prospectively received a Likert score of likelihood of malignancy at the time of the biopsy. Retrospective analysis of these MR lesions with the CAD showed that the stand-alone CAD outperformed the Likert score in predicting the presence of Gleason ≥7 cancer at biopsy (Area under the receiver operating characteristic curve (AUC): 0.94 (95% confidence interval (95CI): 0.90-0.98 versus 0.81 (95CI: 0.75-0.88), p<0.0002)). These good results encourage us to perform an external validation of the CAD testing its performance on mpMRI from another manufacturer (Siemens) and another institution.

The principal objective of the DIJON-CAD study is to evaluate the performances of the QCAD developed in Lyon (QCAD/Lyon) in a cohort of consecutive patients treated by prostatectomy and who underwent preoperative mpMRI on a Siemens 3 Tesla MR imager at the Dijon University Hospital center or at the Dijon Cancer Center (both institutions share the same MR unit). This study is the first step of the external validation of the QCAD/Lyon system. It is only aimed at verifying that the diagnostic performance of the system is not very poor on external mpMRI (which is a substantial risk). If the results are good, a proper multicentric prospective validation study will be planned.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT03687918
Study type Observational
Source Hospices Civils de Lyon
Contact Olivier ROUVIERE, Pr
Phone 04 72 11 04 00
Email GHC.ARC-IMAGERIE@chu-lyon.fr
Status Recruiting
Phase
Start date June 1, 2018
Completion date October 1, 2018

See also
  Status Clinical Trial Phase
Recruiting NCT03177759 - Living With Prostate Cancer (LPC)
Completed NCT02282644 - Individual Phenotype Analysis in Patients With Castration-Resistant Prostate Cancer With CellSearch® and Flow Cytometry N/A
Recruiting NCT03101176 - Multiparametric Ultrasound Imaging in Prostate Cancer N/A
Recruiting NCT03290417 - Correlative Analysis of the Genomics of Vitamin D and Omega-3 Fatty Acid Intake in Prostate Cancer N/A
Active, not recruiting NCT00341939 - Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
Completed NCT01497925 - Ph 1 Trial of ADI-PEG 20 Plus Docetaxel in Solid Tumors With Emphasis on Prostate Cancer and Non-Small Cell Lung Cancer Phase 1
Recruiting NCT03554317 - COMbination of Bipolar Androgen Therapy and Nivolumab Phase 2
Completed NCT03271502 - Effect of Anesthesia on Optic Nerve Sheath Diameter in Patients Undergoing Robot-assisted Laparoscopic Prostatectomy N/A
Recruiting NCT03668652 - Focal Prostate Ablation Versus Radical Prostatectomy N/A
Completed NCT01943500 - Collection of Blood Specimens for Circulating Tumor Cell Analysis N/A
Terminated NCT00953576 - Ketoconazole, Hydrocortisone, Dutasteride and Lapatinib (KHAD-L) in Prostate Cancer Phase 1/Phase 2
Recruiting NCT03568188 - Efficacy Evaluation of Focused HIFU (High Intensity Focused Ultrasound) Therapy in Patients With Localized Intermediate Risk Prostate Cancer Phase 2
Recruiting NCT03756597 - PAN-study: Pan-Cancer Early Detection Study (PAN)
Recruiting NCT03543189 - Combination of Nivolumab Immunotherapy With Radiation Therapy and Androgen Deprivation Therapy Phase 1/Phase 2
Active, not recruiting NCT00779168 - White Button Mushroom Extract in Treating Patients With Recurrent Prostate Cancer After Local Therapy Phase 1
Recruiting NCT02799706 - Trial Comparing Irradiation Plus Long Term Adjuvant Androgen Deprivation With GnRH Antagonist Versus GnRH Agonist Plus Flare Protection in Patients With Very High Risk Localized or Locally Advanced Prostate Cancer Phase 3
Recruiting NCT01990196 - Neoadjuvant Phase 2 Study Comparing the Effects of AR Inhibition With/Without SRC or MEK Inhibition in Prostate Cancer Phase 2
Completed NCT02124668 - A Study to Monitor the Safety of Enzalutamide in Patients With Progressive Castration-Resistant Prostate Cancer Previously Treated With Docetaxel-Based Chemotherapy Phase 2
Recruiting NCT03327675 - High Precision Imaging of Prostate Specific Membrane Antigen for Personalized Treatment in Prostate Cancer N/A
Active, not recruiting NCT01420250 - Cabazitaxel With Radiation and Hormone Therapy for Prostate Cancer Phase 1