Clinical Trials Logo

Clinical Trial Summary

This project will provide new data to address an important question linking Alzheimer's disease neuropathology to physical disability.


Clinical Trial Description

Impaired mobility is strongly linked to cognitive function and vice versa. Cognitive functions are strongly associated with mobility function, most commonly assessed using gait speed. In the Health ABC Study, Digit Symbol Substitution Test (DSST) and Modified Mini Mental Status (3MS) scores were significantly associated with gait speed and gait speed decline. Poor lower extremity performance predicts faster age-related cognitive decline and increased incidence of mild cognitive impairment (MCI) and dementia. This study will explore the role of tau protein as the neuropathologic basis for these associations. Brain imaging markers may be the link between cognitive measures and gait. White matter disease is commonly measured by quantifying white matter (WM) lesion load, which is associated with small vessel ischemic disease. More subtle microstructural changes can be observed by calculating fractional anisotropy (FA) from diffusion tensor imaging (DTI). Aging is accompanied by changes in cortical volume, white matter microstructure and an increased prevalence of WM lesions. WM lesions have been strongly implicated in declining physical function. These brain changes are associated with impaired balance, slower movement speeds, slower chair stand times and increased falls risk.Recently, Aâ accumulation in the brain has also been linked to slow gait. This finding suggests a pathologic mechanism linking Alzheimer s disease processes to gait impairments. However, Aâ accumulation itself may not be the critical neuropathic change. In recent studies of Aâ42 and phosphorylated tau protein in cerebral spinal fluid, it has been found that low Aâ42 levels themselves are not associated with impaired cognition, but that elevated tau levels are also required. If the process of cognitive impairment parallels the process of gait impairment, it might be that tau levels are more important correlates of gait changes. To the investigators' knowledge the relationship between CSF tau levels and mobility has never been explored. PET ligands for brain tau have recently become available, but the relationship between brain tau accumulation and gait has yet to be determined. In this study, investigators will relate gait characteristics to CSF Aâ42 and phosphorylated tau levels, and perform brain PET imaging in a subset to related tau protein accumulation to gait characteristics for the first time. Both mobility impairment and Alzheimers disease (AD) occur in the context of the aging vascular system. Over the past 15 years, it has been recognized that abnormalities of thoracic aortic stiffness are associated with the development of abnormalities in small vessels supplying the brain and kidneys. As the aorta stiffens, the propagation speed of the systolic flow wave increases through the aortic lumen. (Stiffness within the thoracic aorta can be accomplished through measurement of aortic pulse wave velocity.) In hypertensive patients, aortic archway pulse wave velocity has been associated with increases in left ventricular mass as well as lacunar brain infarcts independent of age, sex, and the duration of hypertension. In the Multi-Ethnic Dallas Heart Study aortic arch pulse wave velocity is an independent predictor of white matter hyper-intensities. In those with diabetes, increasing aortic stiffness contributes to the development of small vessel microvascular dysfunction which is associated with deep white matter atrophy as well as cognitive decline. Recently, a stiffness mismatch between the thoracic aorta and small vessels within the cerebral microcirculation has been described. This mismatch impacts microvascular pulsatility and appears to diminish diffusion anisotrophy between the cerebral spinal fluid and the CNS microcirculation. This observation may contribute to retained amyloid type protein in those with AD. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03430648
Study type Observational
Source Wake Forest University Health Sciences
Contact
Status Completed
Phase
Start date September 7, 2017
Completion date September 27, 2021

See also
  Status Clinical Trial Phase
Completed NCT04044495 - Sleep, Rhythms and Risk of Alzheimer's Disease N/A
Completed NCT04079803 - PTI-125 for Mild-to-moderate Alzheimer's Disease Patients Phase 2
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Recruiting NCT04520698 - Utilizing Palliative Leaders In Facilities to Transform Care for Alzheimer's Disease N/A
Active, not recruiting NCT04606420 - Can Lifestyle Changes Reverse Early-Stage Alzheimer's Disease N/A
Recruiting NCT05820919 - Enhancing Sleep Quality for Nursing Home Residents With Dementia - R33 Phase N/A
Terminated NCT03672474 - REGEnLIFE RGn530 - Feasibility Pilot N/A
Recruiting NCT05557409 - A Study to Assess the Efficacy and Safety of AXS-05 in Subjects With Alzheimer's Disease Agitation Phase 3
Recruiting NCT04522739 - Spironolactone Safety in African Americans With Mild Cognitive Impairment and Early Alzheimer's Disease Phase 4
Recruiting NCT05288842 - Tanycytes in Alzheimer's Disease and Frontotemporal Dementia
Recruiting NCT04949750 - Efficacy of Paper-based Cognitive Training in Vietnamese Patients With Early Alzheimer's Disease N/A
Completed NCT06194552 - A Multiple Dose Study of the Safety and Pharmacokinetics of NTRX-07 Phase 1
Completed NCT03239561 - Evaluation of Tau Protein in the Brain of Participants With Alzheimer's Disease Compared to Healthy Participants Early Phase 1
Completed NCT03184467 - Clinical Trial to Evaluate the Efficacy and Safety of GV1001 in Alzheimer Patients Phase 2
Active, not recruiting NCT03676881 - Longitudinal Validation of a Computerized Cognitive Battery (Cognigram) in the Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease
Terminated NCT03487380 - Taxonomic and Functional Composition of the Intestinal Microbiome: a Predictor of Rapid Cognitive Decline in Patients With Alzheimer's Disease N/A
Completed NCT05538455 - Investigating ProCare4Life Impact on Quality of Life of Elderly Subjects With Neurodegenerative Diseases N/A
Recruiting NCT05328115 - A Study on the Safety, Tolerability and Immunogenicity of ALZ-101 in Participants With Early Alzheimer's Disease Phase 1
Completed NCT05562583 - SAGE-LEAF: Reducing Burden in Alzheimer's Disease Caregivers Through Positive Emotion Regulation and Virtual Support N/A
Withdrawn NCT02707978 - F 18 T807 Tau PET Imaging of Frontotemporal Dementia (FTD) Phase 2