Peripheral Arterial Disease Clinical Trial
Official title:
An Observational, Practice-Based, Open Label, Feasibility Study to Observe the Efficacy and Safety of Intramuscular Administration of Stempeucel® in Malaysian Patients With Critical Limb Ischemia (CLI) Due to Peripheral Arterial Disease.
The goal of this observational, practice-based feasibility study is to observe the efficacy and safety of intramuscular administration of Stempeucel® in Malaysian patients with critical limb ischemia (CLI) due to peripheral arterial disease. The main questions it aims to answer are: - Can intramuscular administration of Stempeucel® reduce symptoms of CLI due to peripheral arterial disease while improving the healing rate and functional outcomes? - Does intramuscular administration of Stempeucel® causes any serious adverse events in CLI due to peripheral arterial disease patients? Study patients will be assessed by the PI before administering the Stempeucel® for any other organ with inflammation. The study patients will also be followed up to the duration of 1 year after study treatment administration for safety and efficacy assessment.
Status | Recruiting |
Enrollment | 10 |
Est. completion date | December 2024 |
Est. primary completion date | October 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 65 Years |
Eligibility | Inclusion Criteria: - Patients between 18-65 years old - Patients diagnosed with atherosclerotic peripheral arterial disease - Patients not eligible for or have failed surgical or percutaneous revascularization (No option patients) - Patients with at least one ulcer (between 0.5 to 10 cm2 size) - Ankle brachial pressure index (ABPI) = 0.6 (toe brachial index (TBI) if ABPI out of range; TBI = 0.5) - Patients who are able and willing to provide consent and agrees to comply with study procedures and follow-up evaluations Exclusion Criteria: - Patients diagnosed with Buerger's disease by Shionoya criteria - Patients eligible for surgical or percutaneous revascularization - Patients with a history of participating in another stem cell trial or therapy within 3 months - Patients who are unsuitable to participate the clinical trial as determined by investigators |
Country | Name | City | State |
---|---|---|---|
Malaysia | Hospital Canselor Tunku Mukhriz | Kuala Lumpur |
Lead Sponsor | Collaborator |
---|---|
Cell Biopeutics Resources Sdn Bhd | National University of Malaysia, Stempeutics Research Pvt Ltd |
Malaysia,
Amann B, Luedemann C, Ratei R, Schmidt-Lucke JA. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant. 2009;18(3):371-80. doi: 10.3727/096368909788534942. Epub 2009 Apr 2. — View Citation
Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997 Feb 14;275(5302):964-7. doi: 10.1126/science.275.5302.964. — View Citation
Bhatia R, Hare JM. Mesenchymal stem cells: future source for reparative medicine. Congest Heart Fail. 2005 Mar-Apr;11(2):87-91; quiz 92-3. doi: 10.1111/j.1527-5299.2005.03618.x. — View Citation
Bhattacharya V, McSweeney PA, Shi Q, Bruno B, Ishida A, Nash R, Storb RF, Sauvage LR, Hammond WP, Wu MH. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34(+) bone marrow cells. Blood. 2000 Jan 15;95(2):581-5. — View Citation
Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL, Saint-Lebese B, Peyrafitte JA, Fleury S, Gadelorge M, Taurand M, Dupuis-Coronas S, Leobon B, Casteilla L. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014 Feb;16(2):245-57. doi: 10.1016/j.jcyt.2013.11.011. — View Citation
Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Govt. of India. Draft Guidelines on Audio-Visual Recording of Informed Consent Process in Clinical Trial. 2014. [cited 2016 Jul 29]. Available from: http://www.cdsco.nic.in/writereaddata/Guidance_for_AV%20Recording_09.January.14.pdf.
ClinicalTrials.gov. Identifier NCT01257776, Human Adipose Derived Mesenchymal Stem Cells for Critical Limb Ischemia (CLI) in Diabetic Patients. Available from: http://clinicaltrials.gov/ct2/show/NCT01079403
Conte MS, Geraghty PJ, Bradbury AW, Hevelone ND, Lipsitz SR, Moneta GL, Nehler MR, Powell RJ, Sidawy AN. Suggested objective performance goals and clinical trial design for evaluating catheter-based treatment of critical limb ischemia. J Vasc Surg. 2009 Dec;50(6):1462-73.e1-3. doi: 10.1016/j.jvs.2009.09.044. Epub 2009 Nov 7. — View Citation
Debin L, Youzhao J, Ziwen L, et al. Autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia. Journal of Medical Colleges of PLA. 2008; 23(2): 106-155. doi: 10.1016/S1000-1948(08)60031-3
Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W, Sturgeon C, Hewett T, Chung T, Stock W, Sher D, Weissman S, Ferrer K, Mosca J, Deans R, Moseley A, Hoffman R. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol. 2001 Feb;29(2):244-55. doi: 10.1016/s0301-472x(00)00635-4. — View Citation
Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002 May 15;99(10):3838-43. doi: 10.1182/blood.v99.10.3838. — View Citation
Dormandy J, Heeck L, Vig S. The fate of patients with critical leg ischemia. Semin Vasc Surg. 1999 Jun;12(2):142-7. — View Citation
Fadini GP, Agostini C, Avogaro A. Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis. 2010 Mar;209(1):10-7. doi: 10.1016/j.atherosclerosis.2009.08.033. Epub 2009 Aug 21. — View Citation
Gottsater A. Managing risk factors for atherosclerosis in critical limb ischaemia. Eur J Vasc Endovasc Surg. 2006 Nov;32(5):478-83. doi: 10.1016/j.ejvs.2006.03.007. Epub 2006 Apr 24. — View Citation
Gupta NK, Armstrong EJ, Parikh SA. The current state of stem cell therapy for peripheral artery disease. Curr Cardiol Rep. 2014 Feb;16(2):447. doi: 10.1007/s11886-013-0447-2. — View Citation
Gupta PK, Chullikana A, Parakh R, Desai S, Das A, Gottipamula S, Krishnamurthy S, Anthony N, Pherwani A, Majumdar AS. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J Transl Med. 2013 Jun 10;11:143. doi: 10.1186/1479-5876-11-143. — View Citation
Gupta PK, Krishna M, Chullikana A, Desai S, Murugesan R, Dutta S, Sarkar U, Raju R, Dhar A, Parakh R, Jeyaseelan L, Viswanathan P, Vellotare PK, Seetharam RN, Thej C, Rengasamy M, Balasubramanian S, Majumdar AS. Administration of Adult Human Bone Marrow-Derived, Cultured, Pooled, Allogeneic Mesenchymal Stromal Cells in Critical Limb Ischemia Due to Buerger's Disease: Phase II Study Report Suggests Clinical Efficacy. Stem Cells Transl Med. 2017 Mar;6(3):689-699. doi: 10.5966/sctm.2016-0237. Epub 2016 Oct 5. — View Citation
Haugen S, Casserly IP, Regensteiner JG, Hiatt WR. Risk assessment in the patient with established peripheral arterial disease. Vasc Med. 2007 Nov;12(4):343-50. doi: 10.1177/1358863X07083278. — View Citation
Hirata K, Li TS, Nishida M, Ito H, Matsuzaki M, Kasaoka S, Hamano K. Autologous bone marrow cell implantation as therapeutic angiogenesis for ischemic hindlimb in diabetic rat model. Am J Physiol Heart Circ Physiol. 2003 Jan;284(1):H66-70. doi: 10.1152/ajpheart.00547.2002. Epub 2002 Sep 19. — View Citation
Iba O, Matsubara H, Nozawa Y, Fujiyama S, Amano K, Mori Y, Kojima H, Iwasaka T. Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation. 2002 Oct 8;106(15):2019-25. doi: 10.1161/01.cir.0000031332.45480.79. — View Citation
ICH Topic E 2 A: Clinical Safety Data Management: Definitions and Standards for Expedited Reporting-(CPMP/ICH/377/95)
Idei N, Soga J, Hata T, Fujii Y, Fujimura N, Mikami S, Maruhashi T, Nishioka K, Hidaka T, Kihara Y, Chowdhury M, Noma K, Taguchi A, Chayama K, Sueda T, Higashi Y. Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with critical limb ischemia: a comparison of atherosclerotic peripheral arterial disease and Buerger disease. Circ Cardiovasc Interv. 2011 Feb 1;4(1):15-25. doi: 10.1161/CIRCINTERVENTIONS.110.955724. Epub 2011 Jan 4. — View Citation
Ikenaga S, Hamano K, Nishida M, Kobayashi T, Li TS, Kobayashi S, Matsuzaki M, Zempo N, Esato K. Autologous bone marrow implantation induced angiogenesis and improved deteriorated exercise capacity in a rat ischemic hindlimb model. J Surg Res. 2001 Apr;96(2):277-83. doi: 10.1006/jsre.2000.6080. — View Citation
Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3422-7. doi: 10.1073/pnas.97.7.3422. — View Citation
Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, Masaki H, Mori Y, Iba O, Tateishi E, Kosaki A, Shintani S, Murohara T, Imaizumi T, Iwasaka T. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 2001 Aug 28;104(9):1046-52. doi: 10.1161/hc3501.093817. — View Citation
Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb Haemost. 2010 Apr;103(4):696-709. doi: 10.1160/TH09-10-0688. Epub 2010 Feb 19. — View Citation
Liang TW, Jester A, Motaganahalli RL, Wilson MG, G'Sell P, Akingba GA, Fajardo A, Murphy MP. Autologous bone marrow mononuclear cell therapy for critical limb ischemia is effective and durable. J Vasc Surg. 2016 Jun;63(6):1541-5. doi: 10.1016/j.jvs.2016.01.022. Epub 2016 Mar 23. — View Citation
Lu Y, Wang Z, Zhu M. Human bone marrow mesenchymal stem cells transfected with human insulin genes can secrete insulin stably. Ann Clin Lab Sci. 2006 Spring;36(2):127-36. — View Citation
Mahmud N, Pang W, Cobbs C, Alur P, Borneman J, Dodds R, Archambault M, Devine S, Turian J, Bartholomew A, Vanguri P, Mackay A, Young R, Hoffman R. Studies of the route of administration and role of conditioning with radiation on unrelated allogeneic mismatched mesenchymal stem cell engraftment in a nonhuman primate model. Exp Hematol. 2004 May;32(5):494-501. doi: 10.1016/j.exphem.2004.02.010. — View Citation
Marston WA, Davies SW, Armstrong B, Farber MA, Mendes RC, Fulton JJ, Keagy BA. Natural history of limbs with arterial insufficiency and chronic ulceration treated without revascularization. J Vasc Surg. 2006 Jul;44(1):108-114. doi: 10.1016/j.jvs.2006.03.026. — View Citation
Molavi B, Zafarghandi MR, Aminizadeh E, Hosseini SE, Mirzayi H, Arab L, Baharvand H, Aghdami N. Safety and Efficacy of Repeated Bone Marrow Mononuclear Cell Therapy in Patients with Critical Limb Ischemia in a Pilot Randomized Controlled Trial. Arch Iran Med. 2016 Jun;19(6):388-96. — View Citation
Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci. 2000 Apr;113 ( Pt 7):1161-6. doi: 10.1242/jcs.113.7.1161. — View Citation
Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG; TASC II Working Group; Bell K, Caporusso J, Durand-Zaleski I, Komori K, Lammer J, Liapis C, Novo S, Razavi M, Robbs J, Schaper N, Shigematsu H, Sapoval M, White C, White J, Clement D, Creager M, Jaff M, Mohler E 3rd, Rutherford RB, Sheehan P, Sillesen H, Rosenfield K. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33 Suppl 1:S1-75. doi: 10.1016/j.ejvs.2006.09.024. Epub 2006 Nov 29. No abstract available. — View Citation
Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377-84. doi: 10.1634/stemcells.22-3-377. — View Citation
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2;284(5411):143-7. doi: 10.1126/science.284.5411.143. — View Citation
Rasmusson I. Immune modulation by mesenchymal stem cells. Exp Cell Res. 2006 Jul 15;312(12):2169-79. doi: 10.1016/j.yexcr.2006.03.019. Epub 2006 Apr 24. — View Citation
Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci. 2001 Jun;938:231-3; discussion 233-5. doi: 10.1111/j.1749-6632.2001.tb03593.x. — View Citation
Schiavetta A, Maione C, Botti C, Marino G, Lillo S, Garrone A, Lanza L, Pagliari S, Silvestroni A, Signoriello G, Sica V, Cobellis G. A phase II trial of autologous transplantation of bone marrow stem cells for critical limb ischemia: results of the Naples and Pietra Ligure Evaluation of Stem Cells study. Stem Cells Transl Med. 2012 Jul;1(7):572-8. doi: 10.5966/sctm.2012-0021. Epub 2012 Jul 6. — View Citation
Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998 Jul 15;92(2):362-7. — View Citation
Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J, Imaizumi T. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation. 2001 Feb 13;103(6):897-903. doi: 10.1161/01.cir.103.6.897. — View Citation
Sprengers RW, Lips DJ, Moll FL, Verhaar MC. Progenitor cell therapy in patients with critical limb ischemia without surgical options. Ann Surg. 2008 Mar;247(3):411-20. doi: 10.1097/SLA.0b013e318153fdcb. — View Citation
Tachi Y, Fukui D, Wada Y, Koshikawa M, Shimodaira S, Ikeda U, Amano J. Changes in angiogenesis-related factors in serum following autologous bone marrow cell implantation for severe limb ischemia. Expert Opin Biol Ther. 2008 Jun;8(6):705-12. doi: 10.1517/14712598.8.6.705. — View Citation
Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T; Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002 Aug 10;360(9331):427-35. doi: 10.1016/S0140-6736(02)09670-8. — View Citation
Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003 Feb 15;75(3):389-97. doi: 10.1097/01.TP.0000045055.63901.A9. — View Citation
Wester T, Jorgensen JJ, Stranden E, Sandbaek G, Tjonnfjord G, Bay D, Kolleros D, Kroese AJ, Brinchmann JE. Treatment with autologous bone marrow mononuclear cells in patients with critical lower limb ischaemia. A pilot study. Scand J Surg. 2008;97(1):56-62. doi: 10.1177/145749690809700108. — View Citation
Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007 Oct;25(10):2648-59. doi: 10.1634/stemcells.2007-0226. Epub 2007 Jul 5. — View Citation
* Note: There are 46 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in ischemic rest pain | Change in visual analog score (VAS) compared to screening | Screening (Day -14 to -1), Day 30, 90, 180 and 360 | |
Primary | Change in size of the ulcer | Change in size of the ulcer compared to screening | Screening (Day -14 to -1), Day 30, 90, 180 and 360 | |
Primary | Change in ankle brachial pressure index (ABPI) | Change in ankle brachial pressure index (ABPI) compared to screening | Screening (Day -14 to -1), Day 30, 90, 180 and 360 | |
Primary | Change in total walking distance | Change in total walking distance on a treadmill compared to screening | Screening (Day -14 to -1), Day 30, 90, 180 and 360 | |
Primary | Change in major amputation-free survival | Change in amputation-free survival compared to screening | Screening (Day -14 to -1), Day 30, 90, 180 and 360 | |
Primary | Change in angiogenesis | Change in angiogenesis measured by digital subtraction angiogram (DSA) compared to screening | Screening (Day -14 to -1), Day 180 | |
Secondary | The type of AE(s), number of AE(s) and proportion of patients with AE(s) | Monitored and recorded as voluntarily disclosed by the patients and as observed by the Investigator throughout the study | Screening (Day -14 to -1) | |
Secondary | Incidence of abnormal laboratory test results (serum chemistry, haematology, liver function test) | The following lab tests will be conducted: serum chemistry, haematology, liver function test. In case of abnormal results, they shall be recorded as an adverse event or excluded from study (screening). | Screening (Day -14 to -1), Day 7, 30, 90, 180 and 360 | |
Secondary | Incidence of abnormal urine test results | Urine test will be conducted. In case of abnormal results, they shall be recorded as an adverse event or excluded from study (screening). | Screening (Day -14 to -1), Day 180 | |
Secondary | Incidence of abnormal TNF-a | TNF-a test will be conducted. In case of abnormal results, they shall be recorded as an adverse event or excluded from study (screening). | Screening (Day -14 to -1), Day 7 and 30 | |
Secondary | Incidence of abnormal vital signs | The following assessments will be conducted: blood pressure, heart rate, respiratory rate and temperature. In case of abnormal results, they shall be recorded as an adverse event or excluded from the study (screening). | Screening (Day -14 to -1), Baseline, Day 7, 30, 90, 180 and 360 | |
Secondary | Incidence of abnormal physical examination | The following examinations will be conducted: visual, heart, lungs, abdomen, nervous system, muscoskeletal system and etc. In case of abnormal conditions, they shall be recorded as an adverse event or excluded from the study (screening). | Screening (Day -14 to -1), Baseline, Day 7, 30, 90, 180 and 360 | |
Secondary | Incidence of abnormal ECG parameters | The following assessments will be conducted: 12 lead ECG recordings with long Lead II, and two-dimensional echocardiography (2D ECHO; if needed). In case of abnormal conditions, they shall be recorded as an adverse event or excluded from study (screening). | Screening (Day -14 to -1), Baseline, Day 7, 30, 90, 180 and 360 | |
Secondary | Incidence of abnormal chest condition | Chest x-ray will be conducted. In case of abnormal conditions, they shall be recorded as an adverse event or excluded from study (screening). | Screening (Day -14 to -1), Day 180 |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06032065 -
Sequential Multiple Assessment Randomized Trial of Exercise for PAD: SMART Exercise for PAD (SMART PAD)
|
Phase 3 | |
Active, not recruiting |
NCT03987061 -
MOTIV Bioresorbable Scaffold in BTK Artery Disease
|
N/A | |
Recruiting |
NCT03506633 -
Impacts of Mitochondrial-targeted Antioxidant on Peripheral Artery Disease Patients
|
N/A | |
Active, not recruiting |
NCT03506646 -
Dietary Nitrate Supplementation and Thermoregulation
|
N/A | |
Active, not recruiting |
NCT04677725 -
NEtwork to Control ATherothrombosis (NEAT Registry)
|
||
Recruiting |
NCT05961943 -
RESPONSE-2-PAD to Reduce Sedentary Time in Peripheral Arterial Disease Patients
|
N/A | |
Recruiting |
NCT06047002 -
Personalised Antiplatelet Therapy for Patients With Symptomatic Peripheral Arterial Disease
|
||
Completed |
NCT03185052 -
Feasibility of Outpatient Care After Manual Compression in Patients Treated for Peripheral Arterial Disease by Endovascular Technique With 5F Sheath Femoral Approach
|
N/A | |
Recruiting |
NCT05992896 -
A Study of Loco-Regional Liposomal Bupivacaine Injection
|
Phase 4 | |
Completed |
NCT04635501 -
AbsorbaSeal (ABS 5.6.7) Vascular Closure Device Trial
|
N/A | |
Recruiting |
NCT04584632 -
The Efemoral Vascular Scaffold System (EVSS) for the Treatment of Patients With Symptomatic Peripheral Vascular Disease From Stenosis or Occlusion of the Femoropopliteal Artery
|
N/A | |
Withdrawn |
NCT03994185 -
The Merit WRAPSODY™ Endovascular Stent Graft for Treatment of Iliac Artery Occlusive Disease
|
N/A | |
Withdrawn |
NCT03538392 -
Serranator® Alto Post Market Clinical Follow Up (PMCF) Study
|
||
Recruiting |
NCT02915796 -
Autologous CD133(+) Cells as an Adjuvant to Below the Knee Percutaneous Transluminal Angioplasty
|
Phase 1 | |
Active, not recruiting |
NCT02900924 -
Observational Study to Evaluate the BioMimics 3D Stent System: MIMICS-3D
|
||
Completed |
NCT02901847 -
To Evaluate the Introduction of a Public Health Approach to Peripheral Arterial Disease (PAD) Using National Centre for Sport and Exercise Medicine Facilities.
|
N/A | |
Not yet recruiting |
NCT02455726 -
Magnesium Oral Supplementation to Reduce Pain Inpatients With Severe Peripheral Arterial Occlusive Disease
|
N/A | |
Not yet recruiting |
NCT02387450 -
Reduced Cardiovascular Morbi-mortality by Sildenafil in Patients With Arterial Claudication
|
Phase 2/Phase 3 | |
Withdrawn |
NCT02126540 -
Trial of Pantheris System, an Atherectomy Device That Provides Imaging While Removing Plaque in Lower Extremity Arteries
|
N/A | |
Completed |
NCT02384980 -
Saving Life and Limb: FES for the Elderly With PAD
|
Phase 1 |