Femoropopliteal In-stent Restenosis Clinical Trial
Official title:
JetStream Atherectomy for the Treatment of In-stent Restenosis of the Femoropopliteal Artery
The purpose of this study is to test the hypothesis that Jetstream atherectomy (JS) and adjunctive balloon angioplasty (PTA) (JS +PTA) improves target lesion revascularization (TLR) at 6 months follow-up when compared to historic data from PTA alone in the treatment of femoropopliteal (FP) arterial In-stent restenotic (ISR) disease. This is a prospective, multicenter, single arm study evaluating the investigational use of Jetstream Atherectomy (JS) and adjunctive balloon angioplasty (JS +PTA) in the treatment of FP ISR lesions in subjects with claudication or limb ischemia (Rutherford clinical category (RCC) of 2-4) (lesion length ≥ 4 cm). The comparator arm is historic data from plain old balloon angioplasty derived from a Meta-analysis of the 3 published randomized trials in the field.
The Boston Scientific Jetstream XC catheter is a rotating, aspirating, expandable catheter for active removal of atherosclerotic disease and thrombus in peripheral vasculature. The JS XC System has been cleared by the Food and Drug Administration (FDA) for use in the peripheral vasculature to treat denovo and non-stent infrainguinal lesions Several studies have shown that stenting of the FP artery leads to higher long term patency. Bare metal stents however have not shown conclusively to reducemTLR which is in contrast to drug coated balloons (DCB) and drug coated stents (DCS). Irrespective, stenting has several disadvantages including a continued high rate of restenosis and stent fractures that is progressive with time. FP ISR occurs in more than one third of patients at 1 year and up to 49% at 2 years. Complex lesions (long, Trans-Atlantic Inter-Society Consensus II C/D lesions, total occlusions), certain demographics (female gender, diabetes mellitus), critical limb ischemia and significant stent fractures are associated with a higher rate of restenosis. Also the majority of occluded stents are restenotic-thrombotic and generally are more challenging to treat. Recently 3 randomized trials were presented in treating FP ISR; the EXCImer Laser Randomized Controlled Study for Treatment of FemoropopliTEal In-Stent Restenosis (EXCITE ISR) trial (randomized laser + PTA vs PTA alone), the RELINE trial (Propaten Bioactive Surface vs. standard balloon angioplasty for treatment of in-stent restenosis in the superficial femoral artery) and the Randomized Femoral Artery In-Stent Restenosis (FAIR) Trial. All these studies showed superiority over PTA in treating FP ISR. Early animal data (porcine model of FP ISR) and feasibility human data (JetStream ISR study) have shown that the JetStream device is effective in ablating restenotic tissue within restenotic FP stents and had no safety concerns within well apposed stents and in the absence of Class III and IV fractures. The purpose of this study is to assess and estimate the effect of treating FP ISR with plaque excision using JS in combination with adjunctive PTA and compare this to historic control of PTA. The comparator arm is historic data from PTA derived from a study-level meta-analysis of the 3 published randomized trials in the field. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Withdrawn |
NCT01962389 -
First in Human Study of Winsor Laser Catheter: A Prospective Registry to Evaluate The Safety and Performance of the Winsor Laser Catheter in the Treatment of In-Stent Restenosis
|
Phase 1 |