Clinical Trials Logo

Clinical Trial Summary

Wholegrain fibre is known to affect on the gut health, but also may cause intestinal discomfort. Thus, many individuals may avoid the consumption of whole grain cereals in spite of their known health benefits, and may in this regard consume more restricted diets. In the preset study the aim was to technologically modify the cereal fibres to improve its usability and to maintain its health beneficial properties. The objective was to investigate intestinal fermentation of grain dietary fibre and associated effects on gut-mediated metabolic health, such as immunological health and adipose tissue function. The hypothesis was that whole grain products maintain their original beneficial health effects and may be better tolerable when the bran is technologically modified. Additionally, it was hypothesized that gut-mediated bioavailability of plant cell wall compounds and their metabolites affect the metabolic health through their immunomodulatory effects.


Clinical Trial Description

Cereal foods are the most important source of dietary fibre in the Northern European diet. Epidemiological studies have repeatedly shown that diets rich in whole grain foods reduce the risk of type 2 diabetes mellitus and cardiovascular disease. Cereal fibre complex has been suggested as one of the main constituents behind the protective effects. The dietary fibre complex is composed of biopolymers and small molecular weight compounds, that formulate the structure, content and interactions which change during processing. It has been proposed, based on animal data, that the shift in gut microbiota communities is a potential mechanism linking dietary fibre with reduced diabetes risk. Today it is known that gut microbita is actively interacting with dietary fibre producing active functional compounds to the circulation, and thus contribute to health benefits of dietary fibre. The hypothesis that insoluble fibre is a major contributor of the protective effects of whole-grain type cereal foods emphasizes the importance of dietary fibre structure and the conversions of both carbohydrates and polyphenols in the large intestine. The importance of structural features of grain foods in relation to their protective effect against type 2 diabetes was also pointed out in the previous review. On the other hand, soluble arabinoxylo-oligosaccharides have been shown to be selectively fermented by bifidobacteria in in vitro studies, and may thus also be health-protective.

Large intestinal fermentation of the non-digested material causes both hydrolysis of the cell wall matrix and also liberation, further metabolism and absorption of the associated compounds, such as polyphenols. The interactions between dietary factors, gut microbiota and host metabolism are increasingly demonstrated to be important for maintaining homeostasis and health, but research into the role of fibre structure and phytochemicals in gut microbiota mediated signalling is in its early phases.The physiological effects of dietary fibre are dependent on the physico-chemical properties, which are mainly influenced by particle size, cell wall architecture, solubility, degree of polymerisation and substitution, distribution of side chains and degree of cross-linking of the polymers. Insoluble dietary fibres are generally more resistant to colonic fermentation than soluble dietary fibre. Solubility of dietary fibre has a major effect also on the bioavailability of fibre associated nutrients and phytochemicals. It has been showed in vitro that enzymatic solubilisation of insoluble dietary fibre stimulated the growth of bifidobacteria and lactobacilli. Additionally, it has been shown that the effect of wheat-bran derived arabinoxylo-oligosaccharides on SCFA production and bifidobacterial numbers in rat faeces depended on the average degree of polymerisation (avDP) of the AXOS preparations - the low avDP preparations increased colonic acetate and butyrate production and boosted the bifidobacteria, whereas the higher avDP preparation suppressed branched SCFA concentrations (a marker for protein fermentation). When, the prebiotic effect of whole-grain wheat and wheat bran breakfast cereals was compared in a human PCT, whole grain cereals proved to be more efficient prebiotics for bifidobacteria whereas ingestion of both products resulted in a significant increase in ferulic acid concentrations in blood.

The objective is to investigate intestinal fermentation of grain dietary fibre and associated effects on gut-mediated metabolic health, such as immunological health and adipose tissue function. Part of the population, however, suffers from discomfort of gastrointestinal tract after consumption of whole grain products, especially rye. The hypothesis is that whole grain products maintain their original beneficial health effects and may be better tolerable when the bran is technologically modified. Moreover, it is hypothesized that gut-mediated bioavailability of plant cell wall compounds and their metabolites affect the metabolic health through their immunomodulatory effects. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03550365
Study type Interventional
Source University of Eastern Finland
Contact
Status Completed
Phase N/A
Start date January 1, 2011
Completion date December 31, 2017

See also
  Status Clinical Trial Phase
Recruiting NCT03995979 - Inflammation and Protein Restriction N/A
Completed NCT03255187 - Effect of Dietary Supplemental Fish Oil in Alleviating Health Hazards Associated With Air Pollution N/A
Completed NCT04507867 - Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III N/A
Completed NCT03577223 - Egg Effects on the Immunomodulatory Properties of HDL N/A
Completed NCT04383561 - Relationship Between LRG and Periodontal Disease N/A
Active, not recruiting NCT03622632 - Pilot Study to Measure Uric Acid in Traumatized Patients: Determinants and Prognostic Association
Completed NCT06216015 - Exercise Training and Kidney Transplantation N/A
Completed NCT04856748 - Nomogram to Diagnose Prostatic Inflammation (PIN) in Men With Lower Urinary Tract Symptoms
Completed NCT05529693 - Efficacy of a Probiotic Strain on Level of Markers of Inflammation in an Elderly Population N/A
Recruiting NCT05415397 - Treating Immuno-metabolic Depression With Anti-inflammatory Drugs Phase 3
Recruiting NCT05670301 - Flemish Joint Effort for Biomarker pRofiling in Inflammatory Systemic Diseases N/A
Recruiting NCT04543877 - WHNRC (Western Human Nutrition Research Center) Fiber Intervention Study Early Phase 1
Recruiting NCT05775731 - Markers of Inflammation and of the Pro-thrombotic State in Hospital Shift and Day Workers
Completed NCT03859934 - Metabolic Effects of Melatonin Treatment Phase 1
Completed NCT03429920 - Effect of Fermented Soy Based Product on Cardiometabolic Risk Factors N/A
Active, not recruiting NCT06065241 - Quantifiably Determine if the Botanical Formulation, LLP-01, Has a Significant Clinical Effect on Proteomic Inflammatory Biomarkers and Epigenetic Changes in Healthy, Older Individuals. N/A
Active, not recruiting NCT05864352 - The Role of Dietary Titanium Dioxide on the Human Gut Microbiome and Health
Completed NCT03318731 - Efficacy and Safety of Fenugreek Extract on Markers of Muscle Damage and Inflammation in Untrained Males N/A
Not yet recruiting NCT06134076 - Comparing Effects of Fermented and Unfermented Pulses and Gut Microbiota N/A
Not yet recruiting NCT05910489 - Micro and Nanoplastics in Greenhouse Workers: Biomarkers of Exposure and Effect