Clinical Trials Logo

Clinical Trial Summary

Investigators hypothesize that CPAP treatment for suppressing OSAS in combination with a physical activity program will optimize 24-hour blood pressure control in patients with OSA-related resistant hypertension.


Clinical Trial Description

1. Sleep apnea syndrome, resistant hypertension and cardio-vascular risk. There are many epidemiological and clinical cohort studies demonstrating an increasing cardiovascular risk associated with Obstructive Sleep Apnea Syndrome (OSAS). In epidemiological studies, OSA severity and incident hypertension are linked in a dose-response fashion. This is true even when taking into account usual confounding factors such as age, alcohol, tobacco consumption and body mass index. More specifically, OSAS is the leading cause of refractory hypertension and OSAS prevalence is up to 80% in patients with resistant hypertension.

2. CPAP treatment impact for reducing blood pressure in OSAS patients with resistant hypertension A recent small sample size randomized trial (n=35) demonstrated the positive impact of CPAP in decreasing both clinical and 24-hour ambulatory blood pressure. Compared to the control group, awake systolic/diastolic ambulatory blood pressure monitoring decreased significantly in the continuous positive airway pressure group (Delta: +3.1±3.3 /+2.1±2.7 vs. -6.5±3.3/ 4.5±1.9mmHg in control and CPAP groups respectively, p<0.05). Interestingly, the blood pressure changes were only observed while patients were awake, but not during nocturnal ambulatory blood pressure monitoring (Delta: +2.8±4.5/+1.8±3.5 vs. +1.6±3.5/+0.8±2.9mmHg, p=NS).

HIPARCO Study, the largest Randomized Clinical Trial (RCT) in the field (n=194) recently published in JAMA (9 December 2013) also showed a significant but limited impact of CPAP on blood pressure. In an Intention To Treat analysis, CPAP significantly improved 24-h mean BP (3.0 mmHg; 95% CI 0.3 to 5.8; p=0.031) and DBP (3.2 mmHg; 95% CI 1.0 to 5.4; p=0.005) but not SBP (3.1; 95% CI -0.6 to 6.7; p=0.098). Moreover, patients in the CPAP group had 2.4 (1.2-5.1; p=0.019) times greater probability of recovering their dipper pattern. As CPAP alone is not enough in OSAS to sufficiently improve BP, further studies should address the efficacy of combined therapies in OSAS patients with resistant hypertension.

3. Resistant hypertension and physical activity A study has recently explored the impact of a standardized exercise program in patients suffering from resistant hypertension7. In this RCT, the authors have demonstrated that the group of patients who have benefit from a physical activity program had their systolic and diastolic 24-hour ambulatory blood pressure monitoring decreasing by 6±12 and 3±7 mmHg respectively(p=0.03). Thus, the physical activity implemented in this population enabled a better control of blood pressure values. However the authors do not give any information about the presence of the absence of Sleep Apnea Syndrome (SAS) in this cohort.

4. Study hypothesis:

Investigators hypothesize that CPAP treatment for suppressing OSAS in combination with a physical activity program will optimize 24-hour blood pressure control in patients with OSA-related resistant hypertension.

Originality: Up to now no study has assessed the effects of combining physical activity with CPAP treatment in patients with sleep apnea and resistant hypertension. Our work is will be the first aiming at evaluating the benefit of this combination on the control of the systolic blood arterial pressure. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02057783
Study type Interventional
Source AGIR à Dom
Contact Jean-Louis Pépin, Pr MD PhD
Email JPepin@chu-grenoble.fr
Status Recruiting
Phase N/A
Start date March 26, 2015
Completion date July 2019

See also
  Status Clinical Trial Phase
Completed NCT05582070 - Effect on Sleep of Surgical Treatment of Severe Nasal Obstruction N/A
Recruiting NCT03919955 - A Novel Pharmacological Therapy for Obstructive Sleep Apnea Phase 2
Completed NCT03927547 - Sleep Disordered Breathing and Cardiopulmonary Disease in Peruvian Highlanders N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Completed NCT02188498 - Electrocardiography Data Analysis in Sleep Disorders
Completed NCT01503164 - Effects of Continuous Positive Airway Pressure (CPAP) on Glucose Metabolism N/A
Recruiting NCT00747890 - Surgical Treatment of Mild Obstructive Sleep Apnea N/A
Active, not recruiting NCT00738179 - Continuous Positive Airway Pressure Treatment of Obstructive Sleep Apnea to Prevent Cardiovascular Disease Phase 3
Completed NCT00841906 - Alice PDx User/Validation Extended Trial N/A
Completed NCT00202501 - Usefulness of Nasal Continuous Positive Airway Pressure (CPAP) Treatment in Patients With a First Ever Stroke and Sleep Apnea Syndrome N/A
Completed NCT00047463 - Effects of Treating Obstructive Sleep Apnea in Epilepsy Phase 2
Not yet recruiting NCT06029881 - Portable System for Non-intrusive Monitoring of Sleep
Recruiting NCT06093347 - Central Apnoea Monitor Study
Terminated NCT05445869 - Severe OSA Study (SOS) N/A
Withdrawn NCT04096261 - The Importance of Sleep Quality and the Blood-brain Barrier in Cognitive Disorders and Alzheimer's Disease
Recruiting NCT04575740 - Phenotyping Mechanistic Pathways for Adverse Health Outcomes in Sleep Apnea N/A
Completed NCT04676191 - Validation of a Contactless Vital Signs Measurement Sensor N/A
Recruiting NCT06015620 - Comorbidities Resolution After MGB Surgery and Change in Body Composition
Completed NCT06051097 - Metabolic Syndrome and Obstructive Sleep Apnea
Recruiting NCT05687097 - Untreated Sleep Apnea as an Aggravating Factor for Other Secondary Medical Conditions After Spinal Cord Injury