Healthy Volunteers Clinical Trial
Official title:
Inhaled Dose Analysis Using a Breath Actuated Nebulizer in Healthy Subjects
The goal of this crossover study is to compare urine drug concentrations using a continuous vibrating mesh nebulizer versus a breath-actuated vibrating mesh nebulizer in healthy volunteers. The main questions it aims to answer are: - Whether breath-actuation nebulizer delivers higher inhaled drug dose, resulting in higher urine drug concentrations compared to continuous nebulization. - Whether the different nebulizer modes deliver inhaled drug resulting in different effects on physiological parameters, including heart rate, respiratory rate, blood pressure, and blood oxygen saturation. Participants will - Inhale one dose (2.5mg) of salbutamol via continuous vs. breath-actuated nebulize mode. - collect urine samples at multiple timepoints before and after nebulization to quantify drug elimination. Researchers will compare the continuous and breath-actuated modes of vibrating mesh nebulizers to determine if breath-actuation improves drug delivery efficiency compared to continuous nebulization.
Status | Recruiting |
Enrollment | 30 |
Est. completion date | May 24, 2024 |
Est. primary completion date | May 15, 2024 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 20 Years and older |
Eligibility | Inclusion Criteria: - Willing to sign a written informed consent form. - Healthy male and female participants aged >20 years. - Forced expiratory volume in the first second (FEV1) greater than 80% of the predicted value. Exclusion Criteria: - Pregnant or lactating women. - Regular use of bronchodilators or inhaled medications. - History of bronchodilator allergy. - Hyperthyroidism. - Diabetes. - History of heart disease. - Arrhythmia. - Angina. - Hypertension. - History of glaucoma, hypokalemia, or hyperglycemia. - Severe anemia. - Individuals with severe injuries or burns or limb amputation after breast surgery. - Open wounds or infectious dermatitis on the oral and facial regions. - Acute or infectious respiratory tract infections. - Currently taking any medications. - Respiratory therapy students. |
Country | Name | City | State |
---|---|---|---|
Taiwan | Linkou Chang Gung Memorial Hospital | Taoyuan |
Lead Sponsor | Collaborator |
---|---|
Chang Gung University | Chang Gung Memorial Hospital, National Tsing Hua University |
Taiwan,
Acharya J, Basu A. Deep Neural Network for Respiratory Sound Classification in Wearable Devices Enabled by Patient Specific Model Tuning. IEEE Trans Biomed Circuits Syst. 2020 Jun;14(3):535-544. doi: 10.1109/TBCAS.2020.2981172. Epub 2020 Mar 18. — View Citation
Chamberlain D, Kodgule R, Ganelin D, Miglani V, Fletcher RR. Application of semi-supervised deep learning to lung sound analysis. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:804-807. doi: 10.1109/EMBC.2016.7590823. — View Citation
Charleston-Villalobos S, Martinez-Hernandez G, Gonzalez-Camarena R, Chi-Lem G, Carrillo JG, Aljama-Corrales T. Assessment of multichannel lung sounds parameterization for two-class classification in interstitial lung disease patients. Comput Biol Med. 2011 Jul;41(7):473-82. doi: 10.1016/j.compbiomed.2011.04.009. Epub 2011 May 14. — View Citation
Christiani DC, Kern DG. Asthma risk and occupation as a respiratory therapist. Am Rev Respir Dis. 1993 Sep;148(3):671-4. doi: 10.1164/ajrccm/148.3.671. — View Citation
Denyer J, Dyche T. The Adaptive Aerosol Delivery (AAD) technology: Past, present, and future. J Aerosol Med Pulm Drug Deliv. 2010 Apr;23 Suppl 1(Suppl 1):S1-10. doi: 10.1089/jamp.2009.0791. — View Citation
Denyer J, Prince I, Dixon E, Agent P, Pryor J, Hodson M. Evaluation of the Target Inhalation Mode (TIM) breathing maneuver in simulated nebulizer therapy in patients with cystic fibrosis. J Aerosol Med Pulm Drug Deliv. 2010 Apr;23 Suppl 1(Suppl 1):S29-36. — View Citation
Dhand R. Intelligent nebulizers in the age of the Internet: The I-neb Adaptive Aerosol Delivery (AAD) system. J Aerosol Med Pulm Drug Deliv. 2010 Apr;23 Suppl 1(Suppl 1):iii-v. doi: 10.1089/jamp.2010.0818. No abstract available. — View Citation
Dhand R. New frontiers in aerosol delivery during mechanical ventilation. Respir Care. 2004 Jun;49(6):666-77. — View Citation
Dimich-Ward H, Wymer ML, Chan-Yeung M. Respiratory health survey of respiratory therapists. Chest. 2004 Oct;126(4):1048-53. doi: 10.1378/chest.126.4.1048. — View Citation
Dolovich MB, Dhand R. Aerosol drug delivery: developments in device design and clinical use. Lancet. 2011 Mar 19;377(9770):1032-45. doi: 10.1016/S0140-6736(10)60926-9. Epub 2010 Oct 29. — View Citation
Geller DE, Kesser KC. The I-neb Adaptive Aerosol Delivery System enhances delivery of alpha1-antitrypsin with controlled inhalation. J Aerosol Med Pulm Drug Deliv. 2010 Apr;23 Suppl 1(Suppl 1):S55-9. doi: 10.1089/jamp.2009.0793. — View Citation
Heinzerling A, Stuckey MJ, Scheuer T, Xu K, Perkins KM, Resseger H, Magill S, Verani JR, Jain S, Acosta M, Epson E. Transmission of COVID-19 to Health Care Personnel During Exposures to a Hospitalized Patient - Solano County, California, February 2020. MMWR Morb Mortal Wkly Rep. 2020 Apr 17;69(15):472-476. doi: 10.15585/mmwr.mm6915e5. — View Citation
Islam MA, Bandyopadhyaya I, Bhattacharyya P, Saha G. Multichannel lung sound analysis for asthma detection. Comput Methods Programs Biomed. 2018 Jun;159:111-123. doi: 10.1016/j.cmpb.2018.03.002. Epub 2018 Mar 9. — View Citation
Kern DG, Frumkin H. Asthma in respiratory therapists. Ann Intern Med. 1989 May 15;110(10):767-73. doi: 10.7326/0003-4819-110-10-767. — View Citation
Lipworth BJ. Pharmacokinetics of inhaled drugs. Br J Clin Pharmacol. 1996 Dec;42(6):697-705. doi: 10.1046/j.1365-2125.1996.00493.x. — View Citation
Loeb M, McGeer A, Henry B, Ofner M, Rose D, Hlywka T, Levie J, McQueen J, Smith S, Moss L, Smith A, Green K, Walter SD. SARS among critical care nurses, Toronto. Emerg Infect Dis. 2004 Feb;10(2):251-5. doi: 10.3201/eid1002.030838. — View Citation
Messner E, Fediuk M, Swatek P, Scheidl S, Smolle-Juttner FM, Olschewski H, Pernkopf F. Multi-channel lung sound classification with convolutional recurrent neural networks. Comput Biol Med. 2020 Jul;122:103831. doi: 10.1016/j.compbiomed.2020.103831. Epub 2020 May 23. — View Citation
Nikander K, Prince I, Coughlin S, Warren S, Taylor G. Mode of breathing-tidal or slow and deep-through the I-neb Adaptive Aerosol Delivery (AAD) system affects lung deposition of (99m)Tc-DTPA. J Aerosol Med Pulm Drug Deliv. 2010 Apr;23 Suppl 1(Suppl 1):S3 — View Citation
Sen I, Saraclar M, Kahya YP. A Comparison of SVM and GMM-Based Classifier Configurations for Diagnostic Classification of Pulmonary Sounds. IEEE Trans Biomed Eng. 2015 Jul;62(7):1768-76. doi: 10.1109/TBME.2015.2403616. Epub 2015 Feb 12. — View Citation
Seren E. Frequency spectra of normal expiratory nasal sound. Am J Rhinol. 2005 May-Jun;19(3):257-61. — View Citation
Yeo LY, Friend JR, McIntosh MP, Meeusen EN, Morton DA. Ultrasonic nebulization platforms for pulmonary drug delivery. Expert Opin Drug Deliv. 2010 Jun;7(6):663-79. doi: 10.1517/17425247.2010.485608. — View Citation
* Note: There are 21 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Urinary salbutamol concentration | Quantitative measurement of salbutamol levels in urine samples at protocol-specified timepoints before and after nebulized bronchodilator administration using high performance liquid chromatography (HPLC). | Urine samples will be collected at 30 minutes before nebulization, at 30 minutes, and 24 hours after nebulization. | |
Secondary | Heart rate | Heart rate measured via continuous telemetry | Heart rate will be recorded continuously from 5 minutes before, during, and 30 minutes, and after nebulization. | |
Secondary | Blood pressure | Systolic and diastolic blood pressure | Blood pressure will be recorded from 5 minutes before, during, and 30 minutes after nebulization. | |
Secondary | Saturation | Oxygen saturation using a pulse oximeter. | Oxygen saturation will be recorded from 5 minutes before, during, and 30 minutes after nebulization. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05029518 -
3-Way Crossover Study to Compare the PK (Pharmokinetics) and to Evaluate the Effect of Food on the Bioavailability
|
Phase 1 | |
Completed |
NCT05001152 -
Taste Assessment of Ozanimod
|
Phase 1 | |
Completed |
NCT04493255 -
A Study to Determine the Metabolism and Elimination of [14C]E7090 in Healthy Male Participants
|
Phase 1 | |
Completed |
NCT03457649 -
IV Dose Study to Assess the Safety, Tolerability, PK, PD and Immunogenicity of ARGX-113 in Healthy Volunteers
|
Phase 1 | |
Completed |
NCT00995891 -
Collection of Blood, Bone Marrow, and Buccal Mucosa Samples From Healthy Volunteers for Center for Human Immunology, Autoimmunity, and Inflammatory Diseases (CHI) Laboratory Research Studies
|
||
Completed |
NCT05043766 -
Evaluation of Oral PF614 Relative to OxyContin
|
Phase 1 | |
Completed |
NCT05050318 -
Annual Study for Collection of Serum Samples in Children and Older Adults Receiving the 2021-2022 Formulations of Fluzone Quadrivalent Vaccine and Fluzone High-Dose Quadrivalent Vaccine, Respectively
|
Phase 4 | |
Completed |
NCT04466748 -
A Multiple Ascending Dose Pharmacology Study of Anaprazole in Healthy Chinese Subjects
|
Phase 1 | |
Completed |
NCT00746733 -
Vyvanse and Adderall XR Given Alone and in Combination With Prilosec OTC
|
Phase 1 | |
Recruiting |
NCT05929651 -
Study of Immunogenicity and Safety of MenQuadfi® as a Booster Vaccine in Toddlers 12 to 23 Months, Regardless of the Quadrivalent Meningococcal Conjugate Vaccine Used for Priming in Infancy
|
Phase 4 | |
Completed |
NCT05954039 -
Evaluation of the Efficacy of a Dietary Supplement on Hair Loss and Hair Aspect
|
N/A | |
Completed |
NCT05045716 -
A Study of Subcutaneous Lecanemab in Healthy Participants
|
Phase 1 | |
Active, not recruiting |
NCT02747927 -
Efficacy, Safety and Immunogenicity of Takeda's Tetravalent Dengue Vaccine (TDV) in Healthy Children
|
Phase 3 | |
Completed |
NCT05533801 -
A Study to Demonstrate the Bioequivalence of Lecanemab Supplied in Vials and a Single-Use Auto-Injector (AI) in Healthy Participants
|
Phase 1 | |
Not yet recruiting |
NCT03931369 -
Adaptation of Thirst to a Single Administration of Tolvaptan (TOLVATHIRST)
|
Phase 2 | |
Completed |
NCT03279146 -
A Single Dose Study Evaluating PK of TXL Oral Formulations in Healthy Subjects
|
Phase 1 | |
Completed |
NCT06027437 -
A Study to Assess the Relative Biological Availability and the Effect of Food on the Drug Levels of Danicamtiv in Healthy Adult Participants
|
Phase 1 | |
Recruiting |
NCT05619874 -
Effects of Two Virtual HIFCT Programs in Adults With Abdominal Obesity
|
N/A | |
Completed |
NCT05553418 -
Investigational On-body Injector Clinical Study
|
N/A | |
Completed |
NCT04092712 -
Study Evaluating Pharmacokinetics and Mass Balance of [14C]-CTP-543 in Healthy Adult Male Volunteers
|
Phase 1 |