Coronavirus Infection Clinical Trial
— COP-COVID-19Official title:
Phase II, Randomized, Double-blind, Controlled Clinical Trial Evaluating the Efficacy and Safety of Plasma From Patients Cured of COVID-19 Compared to the Best Available Therapy in Subjects With SARS-CoV-2 Pneumonia
Verified date | May 2021 |
Source | Hospital Universitario Dr. Jose E. Gonzalez |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
In early December 2019, cases of pneumonia of unknown origin were identified in Wuhan, China. The causative virus was called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The World Health Organization (WHO) has recently declared coronavirus disease 2019 (COVID-19) a public health emergency of international concern. According to the World Health Organization (WHO), the management of COVID-19 has focused primarily on infection prevention, detection and patient monitoring. However, there is no vaccine or specific treatment for SARS-CoV-2 due to the lack of evidence. Treatment options currently include broad-spectrum antiviral drugs but the efficacy and safety of these drugs is still unknown. Convalescent plasma has previously been used to treat various outbreaks of other respiratory infections; however, it has not been shown to be effective in all the diseases studied. Therefore, clinical trials are required to demonstrate its safety and efficacy in patients with VIDOC-19. The present work seeks to determine the mortality from any cause up to 14 days after plasma randomization of patients cured of COVID-19 compared to the Best Available Therapy in subjects with SARS-CoV-2 pneumonia. This is a 2:1 randomized, double-blind, single-center, phase 2, controlled clinical trial (plasma: best available therapy) for the treatment of SARS-CoV-2 pneumonia.
Status | Completed |
Enrollment | 31 |
Est. completion date | May 1, 2021 |
Est. primary completion date | May 1, 2021 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: 1. Men or women =18 years. If you are a woman of childbearing age, you must agree to practice abstinence or to use an effective method of contraception during the study period. 2. Vascular access suitable for administration of hemocomponents. 3. SARS-CoV-2 positive RT-PCR. 4. Negative pregnancy test in case of a woman of reproductive age 5. Signing of evidentiary document of informed consent. 6. Hospital admission for SARS-CoV-2 pneumonia with supplemental oxygen requirements. 7. Subjects who access the storage of biological samples for future examination. Exclusion Criteria: 1. Respiratory rate >30 RPM, SO2 <93%, PaO2/FiO2 <200 despite intervention with oxygen therapy after 60 minutes of hospitalization. 2. New alteration of the state of alert that does not revert after interventions 60 minutes after admission to hospital. 3. PAM = 65mmHg despite initial resuscitation on arrival at the centre. 4. Pregnant or breastfeeding patients. 5. Patients that the investigators consider inappropriate to participate in the clinical trial 6. Contraindication to transfusion or history of previous severe reaction to blood products. 7. Have received any blood products in the last 120 days. |
Country | Name | City | State |
---|---|---|---|
Mexico | Hospital Universitario José E. Gonzalez | Monterrey | Nuevo Leon |
Lead Sponsor | Collaborator |
---|---|
Hospital Universitario Dr. Jose E. Gonzalez |
Mexico,
Brunk D. FDA OKs Emergency Use of Convalescent Plasma for Seriously Ill COVID-19 Patients. medscape. 2020:28-29. doi:10.1001/jama.2020.4783
Casadevall A, Pirofski LA. The convalescent sera option for containing COVID-19. J Clin Invest. 2020 Apr 1;130(4):1545-1548. doi: 10.1172/JCI138003. — View Citation
Cheng Y, Wong R, Soo YO, Wong WS, Lee CK, Ng MH, Chan P, Wong KC, Leung CB, Cheng G. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005 Jan;24(1):44-6. — View Citation
Disease C. Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease ( COVID-19 ). CDC. 2020;2019:4-6.
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 Apr 30;382(18):1708-1720. doi: 10.1056/NEJMoa2002032. Epub 2020 Feb 28. — View Citation
Guidance I. Clinical management of severe acute respiratory infection ( SARI ) when COVID-19 disease is suspected . World Heal Organ. 2020:1-21.
Heymann DL, Shindo N; WHO Scientific and Technical Advisory Group for Infectious Hazards. COVID-19: what is next for public health? Lancet. 2020 Feb 22;395(10224):542-545. doi: 10.1016/S0140-6736(20)30374-3. Epub 2020 Feb 13. — View Citation
Hung IF, To KK, Lee CK, Lee KL, Chan K, Yan WW, Liu R, Watt CL, Chan WM, Lai KY, Koo CK, Buckley T, Chow FL, Wong KK, Chan HS, Ching CK, Tang BS, Lau CC, Li IW, Liu SH, Chan KH, Lin CK, Yuen KY. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis. 2011 Feb 15;52(4):447-56. doi: 10.1093/cid/ciq106. Epub 2011 Jan 19. — View Citation
Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020 Mar 16;14(1):69-71. doi: 10.5582/bst.2020.01020. Epub 2020 Jan 28. — View Citation
Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw FM, Lim WS, Makki S, Rooney KD, Nguyen-Van-Tam JS, Beck CR; Convalescent Plasma Study Group. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015 Jan 1;211(1):80-90. doi: 10.1093/infdis/jiu396. Epub 2014 Jul 16. Review. — View Citation
Marano G, Vaglio S, Pupella S, Facco G, Catalano L, Liumbruno GM, Grazzini G. Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus. 2016 Mar;14(2):152-7. doi: 10.2450/2015.0131-15. Epub 2015 Nov 6. Review. — View Citation
NORMA Oficial Mexicana NOM-253-SSA1-2012, Para la disposición de sangre humana y sus componentes con fines terapéuticos. D Of. 2012;Tercera Se.
Numbers SIN. Coronavirus Disease 2019 ( COVID-19 ) Situation Report-71. Vol 2019.; 2020.
Roback JD, Guarner J. Convalescent Plasma to Treat COVID-19: Possibilities and Challenges. JAMA. 2020 Apr 28;323(16):1561-1562. doi: 10.1001/jama.2020.4940. — View Citation
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020 May;109:102433. doi: 10.1016/j.jaut.2020.102433. Epub 2020 Feb 26. Review. — View Citation
Sahr F, Ansumana R, Massaquoi TA, Idriss BR, Sesay FR, Lamin JM, Baker S, Nicol S, Conton B, Johnson W, Abiri OT, Kargbo O, Kamara P, Goba A, Russell JB, Gevao SM. Evaluation of convalescent whole blood for treating Ebola Virus Disease in Freetown, Sierra Leone. J Infect. 2017 Mar;74(3):302-309. doi: 10.1016/j.jinf.2016.11.009. Epub 2016 Nov 17. — View Citation
Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J, Xiao H, Yang Y, Qu J, Qing L, Chen L, Xu Z, Peng L, Li Y, Zheng H, Chen F, Huang K, Jiang Y, Liu D, Zhang Z, Liu Y, Liu L. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020 Apr 28;323(16):1582-1589. doi: 10.1001/jama.2020.4783. — View Citation
Tanne JH. Covid-19: FDA approves use of convalescent plasma to treat critically ill patients. BMJ. 2020 Mar 26;368:m1256. doi: 10.1136/bmj.m1256. — View Citation
Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020 Apr 7;323(13):1239-1242. doi: 10.1001/jama.2020.2648. — View Citation
Yang Y, Yang M, Shen C, Wang F, Yuan J. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections ABSTRACT : medRxiv. 2020.
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020 May;92(5):479-490. doi: 10.1002/jmv.25707. Epub 2020 Mar 3. — View Citation
* Note: There are 21 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Early all-cause mortality | any cause mortality during the first 14 days of treatment | 14 days | |
Secondary | Time in days for SARS-CoV-2 RT-PCR negatives | (48-hour sampling interval from day 3 of hospitalization to two consecutive negatives). | 90 days | |
Secondary | The serum anti-SARS-CoV-2 antibody titres | In subjects of both arms at day 0, 3, 7, 14 and 90. | 90 days | |
Secondary | Detection of serum antibodies | Comparison of anti-SARS-CoV-2 antibody titers | days 0, 3, 7, 14 and 90. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04369456 -
Blood Biomarkers as Predictors of COVID-19 Disease Progression in Recently Infected Kidney Transplant Patients
|
N/A | |
Completed |
NCT04527471 -
Pilot Study of Ensifentrine or Placebo Delivered Via pMDI in Hospitalized Patients With COVID-19
|
Phase 2 | |
Recruiting |
NCT04410510 -
P2Et Extract in the Symptomatic Treatment of Subjects With COVID-19
|
Phase 2/Phase 3 | |
Withdrawn |
NCT04383899 -
Role of Ibuprofen and Other Medicines on Severity of Coronavirus Disease 2019
|
||
Completed |
NCT04542915 -
COVID-19-Related Health and Practices Among Dental Hygienists
|
||
Not yet recruiting |
NCT04400019 -
Prevention of COVID19 Infection in Nursing Homes by Chemoprophylaxis With Hydroxychloroquine (PREVICHARM)
|
Phase 2/Phase 3 | |
Terminated |
NCT04954014 -
Pilot Study of Single Dose Bevacizumab as Treatment for Acute Respiratory Distress Syndrome (ARDS) in COVID-19 Patients
|
Phase 2 | |
Completed |
NCT04532632 -
Taste and Smell Impairment in Critically Ill COVID-19 Patients
|
||
Suspended |
NCT04385771 -
Cytokine Adsorption in Patients With Severe COVID-19 Pneumonia Requiring Extracorporeal Membrane Oxygenation
|
N/A | |
Terminated |
NCT04530448 -
Coronavirus Induced Acute Kidney Injury: Prevention Using Urine Alkalinization
|
Phase 4 | |
Completed |
NCT04413435 -
Clinical Characteristics of Critically Ill Patients With COVID-19
|
||
Terminated |
NCT05593770 -
International Sites: Novel Experimental COVID-19 Therapies Affecting Host Response
|
Phase 2/Phase 3 | |
Completed |
NCT04510493 -
Canakinumab in Patients With COVID-19 and Type 2 Diabetes
|
Phase 3 | |
Active, not recruiting |
NCT04587219 -
The Study of "Gam-COVID-Vac" Vaccine Against COVID-19 With the Participation of Volunteers of 60 y.o and Older
|
Phase 2 | |
Withdrawn |
NCT05430958 -
Safety, Tolerability and Immunogenicity of INO-4800 for COVID19 in Healthy Volunteers
|
Phase 1 | |
Completed |
NCT04596579 -
SARS-CoV-2 (COVID-19) Immune Surveillance Among a Population Based Sample of Adults in Florida
|
||
Completed |
NCT04405934 -
COG-UK Project Hospital-Onset COVID-19 Infections Study
|
N/A | |
Enrolling by invitation |
NCT04484025 -
SPI-1005 Treatment in Moderate COVID-19 Patients
|
Phase 2 | |
Terminated |
NCT04442230 -
NasoVAX in Patients With Early Coronavirus Infectious Disease 2019 (COVID-19)
|
Phase 2 | |
Terminated |
NCT04642638 -
Safety, Immunogenicity, and Efficacy of INO-4800 for COVID-19 in Adults at High Risk of SARS-CoV-2 Exposure
|
Phase 2/Phase 3 |