Clinical Trials Logo

Clinical Trial Summary

The goal of this observational study is to evaluate the complimentary information of anatomy, perfusion and viability of PET and MR. The main question[s] it aims to answer are: - to compare perfusion and anatomy measurements and perfusion related signals from PET and MR imaging and estimate its prognostic values. - to evaluate potential optimization of routine scanning procedure with regards to completeness and potential added value of quantitative measurements.


Clinical Trial Description

Stress perfusion cardiac magnetic resonance (CMR), Cardiac Computed Tomography (CT) and Positron Emission Tomography (PET) are well-established non-invasive imaging tests that are increasingly being used for the assessment of patients with known or suspected ischemic heart disease [1]. While all of these clinically established modalities have different characteristics and thus inherent advantages and disadvantages, none of them alone allows simultaneous exclusive visualization of anatomic, functional, and metabolic features of the heart. Stress CMR provides an accu-rate assessment of cardiac function [2, 3], myocardial scar [4, 5], and myocardial ischemia [6-8]. However, stress perfusion CMR remains underutilized for the assessment of chest pain compared with other non-invasive methods [8]. This is in part due to cost, inadequate access to the technology, long scan times, and an insufficient number of physicians with expertise to interpret the images while automated analysis is not well established for CMR. On the other side, stress PET perfusion imaging can accurately assess myocardial scar and myocardial ischemia and has moreover the unique ability to quantify myocardial blood flow [9, 10]. Given this discrepancy between the professional guidelines supporting the use of stress CMR and the lack of adoption into clinical practice, there is significant interest in developing: (A) more efficient and higher quality image acquisition and (B) more automated and quantitative image analysis approaches to improve the utilization of and access to stress CMR. One such improvement is the modification of the magnetic resonance imaging (MRI) pulse sequence currently used to assess myocardial perfusion so that it can also simultaneously be used to provide the information necessary to quantify myocardial blood flow [11]. Indeed when combined with a specially designed image analysis software, this modified pulse sequence provides images that can be used to automatically quantify myocardial blood flow on a pixel-by-pixel basis [12]. Further improvements in the software used to acquire and analyse stress CMR images are needed to make this important diagnostic tool more accessible to patients that would benefit from it. Hence, the primary goal of this study is to compare in a larger patient sample perfusion and metabolism assessed by MR or complimentary by PET and MR in terms of identifying individuals with myocardial perfusion defects. Furthermore, in those patients where cardiac CT and invasive coro-nary angiography data is available (from clinical routine examinations), complimentary anatomy and perfusion measures of CT, PET, coronary angiography, and MR measurements will be assessed as well. Within this study a comparison of various assessments and possible readouts will be compared with regards values and parameters received. Typical readouts used in clinical routine and available automated algorithms will be used. The goal is to evaluate current clinical protocols, its benefits and potential optimization. Additionally, this study will submit data into a multicentric data registry in order to efficiently test and validate potential of future technological developments in CMR. Therefore, the de-identified images and raw data acquired will be collected from multiple centers and stored at a HIPAA-compliant repository at University of Chicago Medicine and the University of Virginia. The images which would fulfill the criteria for this register will be further processed. The de-identified imaging and clinical data will be distributed to a Core Laboratory located at McGill University (Montreal, Canada) and also to other academic partners for image processing, image analysis, and software development. Additionally, downstream testing and patient outcomes will be collected as pilot data towards determining the clinical impact of automated quantitative myocardial blood flow analysis of stress CMR images. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05609214
Study type Observational
Source University of Zurich
Contact Aju P Pazhenkottil, MD
Phone +41792611965
Email aju.pazhenkottil@usz.ch
Status Recruiting
Phase
Start date November 21, 2022
Completion date December 1, 2026

See also
  Status Clinical Trial Phase
Recruiting NCT06030596 - SPECT Myocardial Blood Flow Quantification for Diagnosis of Ischemic Heart Disease Determined by Fraction Flow Reserve
Completed NCT04080700 - Korean Prospective Registry for Evaluating the Safety and Efficacy of Distal Radial Approach (KODRA)
Recruiting NCT03810599 - Patient-reported Outcomes in the Bergen Early Cardiac Rehabilitation Study N/A
Recruiting NCT06002932 - Comparison of PROVISIONal 1-stent Strategy With DEB Versus Planned 2-stent Strategy in Coronary Bifurcation Lesions. N/A
Not yet recruiting NCT06032572 - Evaluation of the Safety and Effectiveness of the VRS100 System in PCI (ESSENCE) N/A
Recruiting NCT05308719 - Nasal Oxygen Therapy After Cardiac Surgery N/A
Recruiting NCT04242134 - Drug-coating Balloon Angioplasties for True Coronary Bifurcation Lesions N/A
Completed NCT04556994 - Phase 1 Cardiac Rehabilitation With and Without Lower Limb Paddling Effects in Post CABG Patients. N/A
Recruiting NCT05846893 - Drug-Coated Balloon vs. Drug-Eluting Stent for Clinical Outcomes in Patients With Large Coronary Artery Disease N/A
Recruiting NCT06027788 - CTSN Embolic Protection Trial N/A
Recruiting NCT05023629 - STunning After Balloon Occlusion N/A
Completed NCT04941560 - Assessing the Association Between Multi-dimension Facial Characteristics and Coronary Artery Diseases
Completed NCT04006288 - Switching From DAPT to Dual Pathway Inhibition With Low-dose Rivaroxaban in Adjunct to Aspirin in Patients With Coronary Artery Disease Phase 4
Completed NCT01860274 - Meshed Vein Graft Patency Trial - VEST N/A
Recruiting NCT06174090 - The Effect of Video Education on Pain, Anxiety and Knowledge Levels of Coronary Bypass Graft Surgery Patients N/A
Terminated NCT03959072 - Cardiac Cath Lab Staff Radiation Exposure
Completed NCT03968809 - Role of Cardioflux in Predicting Coronary Artery Disease (CAD) Outcomes
Recruiting NCT05065073 - Iso-Osmolar vs. Low-Osmolar Contrast Agents for Optical Coherence Tomography Phase 4
Recruiting NCT04566497 - Assessment of Adverse Outcome in Asymptomatic Patients With Prior Coronary Revascularization Who Have a Systematic Stress Testing Strategy Or a Non-testing Strategy During Long-term Follow-up. N/A
Completed NCT05096442 - Compare the Safety and Efficacy of Genoss® DCB and SeQuent® Please NEO in Korean Patients With Coronary De Novo Lesions N/A