Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02837666
Other study ID # UACJ-ICB-2016-01
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date May 4, 2017
Est. completion date December 10, 2017

Study information

Verified date October 2019
Source Universidad Autonoma de Ciudad Juarez
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The purpose of this study is to demonstrate that Spirulina maxima intake and a dosed physical activity program will decrease, both independently and synergistically, cardiovascular risks (Dyslipidemias and oxidative stress) in overweight and obese subjects.


Description:

Cardiovascular diseases are the leading cause of death globally, being dyslipidemias, oxidative stress, sedentary lifestyle and obesity primary risk factors. As a way to reduce cardiovascular diseases risk factors, the intake of antioxidants that come from a fruit and vegetable-rich diet or nutritional supplements, have been proposed; in this sense, the cyanobacterium Spirulina maxima is an important source of antioxidants, which is currently associated with cardiovascular protection properties. Furthermore, physical exercise at moderated intensity has protective effect exerted against cardiovascular diseases risks, mainly due to physiological adaptations, including expression of antioxidant enzymes, which stop formation and propagation of radicals, improving redox status of the organism.

There is evidence that Spirulina maxima, in addition to exercise, decreases cardiovascular diseases risks, this was mainly observed in animal models. However, no studies in humans under Spirulina maxima and exercise experimental designs proving these benefits are reported. Therefore this study will analyze the independent and synergistic effect of the intake of Spirulina maxima with a program of physical exercise at moderated intensity on general fitness, plasma lipid profile and antioxidant capacity in overweight and obese subjects.

Methods/design: Through a randomized, double blind, placebo controlled, counterbalanced crossover study design, 80 healthy overweight and obese subjects will be assessed during a 12 week isoenergetic diet, accompanied by 4.5 g/day Spirulina maxima intake and/or a systematic physical exercise program at moderate intensity. Body composition, VO2 consumption, heart rate, blood lactate, plasma concentrations of triacylglycerols, total, low and high-density lipoprotein cholesterol, antioxidant status, lipid oxidation, protein carbonyls, superoxide dismutase, catalase, glutathione, glutathione peroxidase, glutathione reductase, and paraoxonase will be assessed.

Discussion: Spirulina maxima and exercise are good alternatives to improve general fitness, to prevent or lessen dyslipidemia and oxidative stress in subjects with risk factor of chronic or noncommunicable diseases. However the independent and synergistic effect of Spirulina maxima with exercise against dyslipidemias and stress in overweight and obesity is not yet known.


Recruitment information / eligibility

Status Completed
Enrollment 52
Est. completion date December 10, 2017
Est. primary completion date September 30, 2017
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 35 Years
Eligibility Inclusion Criteria:

- Overweight (Body mass index (BMI): 25-29.9 kg/m2) and obese (BMI: > 30 kg/m2) persons

Exclusion Criteria:

- Taking drugs and/or food or vitamin supplements

- diabetes

- have a physical or electrocardiographic injury that prevents them from engaging in regular physical exercise

Study Design


Related Conditions & MeSH terms


Intervention

Dietary Supplement:
Supplementation with Spirulina maxima
Supplementation with Spirulina maxima (4.5 g/d) in capsules during 6 weeks.
Other:
Washout
2 weeks washout period to each study subject to avoid any possible carryover effect.
Supplementation with placebo
Supplementation with placebo (4.5 g/d) in capsules during 6 weeks.
Isoenergetic diet
All participants will have a personal isoenergetic diet according to their height, weight, body composition and daily physical activity during 14 weeks
Exercise program
Participants are going to exercise five days a week with the following protocol: Between 5 and 10 min of heating exercise, Between 20-30 min anaerobic exercise and 20-30 min of aerobic exercise (cardiovascular exercise): walking, jogging, running and/or cycling, Three days a week aerobic intensities will be between 60% and 80% and two days between 70% and 90% of the maximum heart rate reserve, and five final minutes of stretching.

Locations

Country Name City State
Mexico Universidad Autonoma de Ciudad Juarez Juarez Chihuahua

Sponsors (1)

Lead Sponsor Collaborator
Universidad Autonoma de Ciudad Juarez

Country where clinical trial is conducted

Mexico, 

References & Publications (39)

[Cholesterolemia control in Spain, 2000. A tool for cardiovascular disease prevention. Ministry of Health and Consumption, Spanish Society of Cardiology and Spanish Society of Arteriosclerosis]. Rev Esp Salud Publica. 2000 May-Jun;74(3):215-53. Spanish. — View Citation

Alvarez-Parrilla, E., de la Rosa, L.A., Torres-Rivas, F., Rodrigo-Garcia, J., González-Aguilar, G. Complexation of apple antioxidants: chlorogenic acid, quercetin and rutin by ß-cyclodextrin (ß-CD). Journal of inclusion phenomena and macrocyclic chemistry, 2005; 53 (1-2): 121-129.

Anitha, L., Chandralekha, K. Effect of supplementation of spirulina on blood glucose, glycosylated hemoglobin and lipid profile of male non-insulin dependent diabetics. Asian J Exp Biol Sci; 2010; 1: 36-46.

Aoi W, Naito Y, Yoshikawa T. Role of oxidative stress in impaired insulin signaling associated with exercise-induced muscle damage. Free Radic Biol Med. 2013 Dec;65:1265-1272. doi: 10.1016/j.freeradbiomed.2013.09.014. Epub 2013 Sep 27. Review. — View Citation

Blé-Castillo JL, Rodríguez-Hernández A, Miranda-Zamora R, Juárez-Oropeza MA, Díaz-Zagoya JC. Arthrospira maxima prevents the acute fatty liver induced by the administration of simvastatin, ethanol and a hypercholesterolemic diet to mice. Life Sci. 2002 Apr 19;70(22):2665-73. — View Citation

Chamorro G, Salazar M, Favila L, Bourges H. [Pharmacology and toxicology of Spirulina alga]. Rev Invest Clin. 1996 Sep-Oct;48(5):389-99. Spanish. — View Citation

Cheong SH, Kim MY, Sok DE, Hwang SY, Kim JH, Kim HR, Lee JH, Kim YB, Kim MR. Spirulina prevents atherosclerosis by reducing hypercholesterolemia in rabbits fed a high-cholesterol diet. J Nutr Sci Vitaminol (Tokyo). 2010;56(1):34-40. — View Citation

Ebbeling CB, Pawlak DB, Ludwig DS. Childhood obesity: public-health crisis, common sense cure. Lancet. 2002 Aug 10;360(9331):473-82. Review. — View Citation

Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Martínez-González MA; PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013 Apr 4;368(14):1279-90. doi: 10.1056/NEJMoa1200303. Epub 2013 Feb 25. Erratum in: N Engl J Med. 2014 Feb 27;370(9):886. Corrected and republished in: N Engl J Med. 2018 Jun 21;378(25):e34. Retraction in: N Engl J Med. 2018 Jun 21;378(25):2441-2442. — View Citation

Fenster CP, Weinsier RL, Darley-Usmar VM, Patel RP. Obesity, aerobic exercise, and vascular disease: the role of oxidant stress. Obes Res. 2002 Sep;10(9):964-8. Review. — View Citation

Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med. 2009 Jan 13;8:1. doi: 10.1186/1476-5918-8-1. — View Citation

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972 Jun;18(6):499-502. — View Citation

Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004 Dec;114(12):1752-61. — View Citation

Genest J, Frohlich J, Fodor G, McPherson R; Working Group on Hypercholesterolemia and Other Dyslipidemias. Recommendations for the management of dyslipidemia and the prevention of cardiovascular disease: summary of the 2003 update. CMAJ. 2003 Oct 28;169(9):921-4. Erratum in: CMAJ. 2003 Nov 25;169(11):1149. — View Citation

Gomez-Cabrera MC, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008 Jan 15;44(2):126-31. doi: 10.1016/j.freeradbiomed.2007.02.001. Epub 2007 Feb 9. Review. — View Citation

Halliwell B, Cross CE. Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect. 1994 Dec;102 Suppl 10:5-12. Review. — View Citation

Hernández Lepe MA, Wall-Medrano A, Juárez-Oropeza MA, Ramos-Jiménez A, Hernández-Torres RP. [SPIRULINA AND ITS HYPOLIPIDEMIC AND ANTIOXIDANT EFFECTS IN HUMANS: A SYSTEMATIC REVIEW]. Nutr Hosp. 2015 Aug 1;32(2):494-500. doi: 10.3305/nh.2015.32.2.9100. Review. Spanish. — View Citation

Hosseini SM, Khosravi-Darani K, Mozafari MR. Nutritional and medical applications of spirulina microalgae. Mini Rev Med Chem. 2013 Jun 1;13(8):1231-7. Review. — View Citation

Iwata K, Inayama T, Kato T. Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. J Nutr Sci Vitaminol (Tokyo). 1990 Apr;36(2):165-71. — View Citation

Jones DP, Carlson JL, Samiec PS, Sternberg P Jr, Mody VC Jr, Reed RL, Brown LA. Glutathione measurement in human plasma. Evaluation of sample collection, storage and derivatization conditions for analysis of dansyl derivatives by HPLC. Clin Chim Acta. 1998 Jul 28;275(2):175-84. — View Citation

Kalafati M, Jamurtas AZ, Nikolaidis MG, Paschalis V, Theodorou AA, Sakellariou GK, Koutedakis Y, Kouretas D. Ergogenic and antioxidant effects of spirulina supplementation in humans. Med Sci Sports Exerc. 2010 Jan;42(1):142-51. doi: 10.1249/MSS.0b013e3181ac7a45. — View Citation

Li S, Chen W, Srinivasan SR, Bond MG, Tang R, Urbina EM, Berenson GS. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. JAMA. 2003 Nov 5;290(17):2271-6. Erratum in: JAMA. 2003 Dec 10;290(22):2943. — View Citation

Lu HK, Hsieh CC, Hsu JJ, Yang YK, Chou HN. Preventive effects of Spirulina platensis on skeletal muscle damage under exercise-induced oxidative stress. Eur J Appl Physiol. 2006 Sep;98(2):220-6. Epub 2006 Aug 30. — View Citation

Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005 Jan;25(1):29-38. Epub 2004 Nov 11. Review. — View Citation

Mazokopakis EE, Papadomanolaki MG, Fousteris AA, Kotsiris DA, Lampadakis IM, Ganotakis ES. The hepatoprotective and hypolipidemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population with non-alcoholic fatty liver disease: a prospective pilot study. Ann Gastroenterol. 2014;27(4):387-394. — View Citation

Mazokopakis EE, Starakis IK, Papadomanolaki MG, Mavroeidi NG, Ganotakis ES. The hypolipidaemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population: a prospective study. J Sci Food Agric. 2014 Feb;94(3):432-7. doi: 10.1002/jsfa.6261. Epub 2013 Jul 10. — View Citation

Montoya, C. G., Ospina, C. O., Mesa, N. S., Cano, C. M., Lobo, M., Arias, P. G. G., & Pérez, B. R. Actividad antioxidante e inhibición de la peroxidación lipídica de extractos de frutos de mortiño (Vaccinium meridionale SW). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 2009; 8 (6): 519-528.

Morillas-Ruiz JM, Villegas García JA, López FJ, Vidal-Guevara ML, Zafrilla P. Effects of polyphenolic antioxidants on exercise-induced oxidative stress. Clin Nutr. 2006 Jun;25(3):444-53. Epub 2006 Jan 19. — View Citation

Moura LP, Puga GM, Beck WR, Teixeira IP, Ghezzi AC, Silva GA, Mello MA. Exercise and spirulina control non-alcoholic hepatic steatosis and lipid profile in diabetic Wistar rats. Lipids Health Dis. 2011 May 15;10:77. doi: 10.1186/1476-511X-10-77. — View Citation

Nagaoka S, Shimizu K, Kaneko H, Shibayama F, Morikawa K, Kanamaru Y, Otsuka A, Hirahashi T, Kato T. A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. J Nutr. 2005 Oct;135(10):2425-30. — View Citation

Ngo-Matip ME, Pieme CA, Azabji-Kenfack M, Biapa PC, Germaine N, Heike E, Moukette BM, Emmanuel K, Philippe S, Mbofung CM, Ngogang JY. Effects of Spirulina platensis supplementation on lipid profile in HIV-infected antiretroviral naïve patients in Yaounde-Cameroon: a randomized trial study. Lipids Health Dis. 2014 Dec 13;13:191. doi: 10.1186/1476-511X-13-191. — View Citation

Pescatello, Linda S., American College of Sports Medicine. Acsms Guidelines for Exercise Testing and Prescription. Wolters Kluwer/Lippincott Williams & Wilkins Health; Edición: 9th revised North American ed. 2014. 480 p

Riss J, Décordé K, Sutra T, Delage M, Baccou JC, Jouy N, Brune JP, Oréal H, Cristol JP, Rouanet JM. Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J Agric Food Chem. 2007 Sep 19;55(19):7962-7. Epub 2007 Aug 16. — View Citation

Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity-associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci. 2013 May 21;14(5):10497-538. doi: 10.3390/ijms140510497. Review. — View Citation

Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014 May 19;24(10):R453-62. doi: 10.1016/j.cub.2014.03.034. Review. — View Citation

Thaakur SR, Jyothi B. Effect of spirulina maxima on the haloperidol induced tardive dyskinesia and oxidative stress in rats. J Neural Transm (Vienna). 2007 Sep;114(9):1217-25. Epub 2007 May 26. — View Citation

Torres-Duran PV, Ferreira-Hermosillo A, Juarez-Oropeza MA. Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of Mexican population: a preliminary report. Lipids Health Dis. 2007 Nov 26;6:33. — View Citation

Upasani CD, Khera A, Balaraman R. Effect of lead with vitamin E, C, or Spirulina on malondialdehyde, conjugated dienes and hydroperoxides in rats. Indian J Exp Biol. 2001 Jan;39(1):70-4. — View Citation

Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 2010 Jan;5(1):51-66. doi: 10.1038/nprot.2009.197. Epub 2009 Dec 17. — View Citation

* Note: There are 39 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Change in lipid profile Change in plasma triacylglycerols, total cholesterol, high density lipoproteins cholesterol, and low density lipoproteins cholesterol after each treatment by using standardized enzymatic methods 14 weeks
Secondary General fitness assessed by change in maximum oxygen consumption Change in maximum oxygen consumption by using a gas analyzer (Cortex Metalizer 3B) 14 weeks
Secondary General fitness assessed by change in heart rate Change in heart rate by using a pulsometer (Polar HT7) 14 weeks
Secondary General fitness assessed by change in lactate Change in lactate concentration by using an automatized method (YSI lactate analyzer-1600) 14 weeks
Secondary General fitness assessed by change in body mass Change in body fat mass and body lean mass by using pletysmography (BOD-POD) 14 weeks
Secondary General fitness assessed by change in blood pressure Change in blood pressure by using an aneroid sphygmomanometer (Edimetric, Medical Technologies) 14 weeks
Secondary Redox status assessed by change in malondialdehyde Change in malondialdehyde concentration by using standardized specific methods 14 weeks
Secondary Redox status assessed by change in protein carbonyls Change in protein carbonyls concentration by using standardized specific methods 14 weeks
Secondary Redox status assessed by change in paraoxonase Change in paraoxonase concentration by using standardized specific methods 14 weeks
Secondary Redox status assessed by change in superoxide dismutase Change in superoxide dismutase concentration by using standardized specific methods 14 weeks
Secondary Redox status assessed by change in catalase Change in catalase concentration by using standardized specific methods 14 weeks
Secondary Redox status assessed by change in glutathione Change in glutathione concentration by using standardized specific methods 14 weeks
Secondary Redox status assessed by change in glutathione reductase Change in glutathione reductase concentration by using standardized specific methods 14 weeks
Secondary Redox status assessed by change in glutathione peroxidase Change in glutathione peroxidase concentration by using standardized specific methods 14 weeks
See also
  Status Clinical Trial Phase
Recruiting NCT05654272 - Development of CIRC Technologies
Recruiting NCT05650307 - CV Imaging of Metabolic Interventions
Recruiting NCT04515303 - Digital Intervention Participation in DASH
Completed NCT04056208 - Pistachios Blood Sugar Control, Heart and Gut Health Phase 2
Recruiting NCT04417387 - The Genetics and Vascular Health Check Study (GENVASC) Aims to Help Determine Whether Gathering Genetic Information Can Improve the Prediction of Risk of Coronary Artery Disease (CAD)
Not yet recruiting NCT06211361 - Cardiac Rehabilitation Program in Patients With Cardiovascular Disease N/A
Not yet recruiting NCT06032572 - Evaluation of the Safety and Effectiveness of the VRS100 System in PCI (ESSENCE) N/A
Recruiting NCT04514445 - The BRAVE Study- The Identification of Genetic Variants Associated With Bicuspid Aortic Valve Using a Combination of Case-control and Family-based Approaches.
Enrolling by invitation NCT04253054 - Chinese Multi-provincial Cohort Study-Beijing Project
Completed NCT03273972 - INvestigating the Lowest Threshold of Vascular bENefits From LDL Lowering With a PCSK9 InhibiTor in healthY Volunteers N/A
Completed NCT03680638 - The Effect of Antioxidants on Skin Blood Flow During Local Heating Phase 1
Recruiting NCT04843891 - Evaluation of PET Probe [64]Cu-Macrin in Cardiovascular Disease, Cancer and Sarcoidosis. Phase 1
Completed NCT04083846 - Clinical Study to Investigate the Pharmacokinetic Profiles and Safety of High-dose CKD-385 in Healthy Volunteers(Fed) Phase 1
Completed NCT04083872 - Clinical Study to Investigate the Pharmacokinetic Profiles and Safety of Highdose CKD-385 in Healthy Volunteers(Fasting) Phase 1
Completed NCT03619148 - The Incidence of Respiratory Symptoms Associated With the Use of HFNO N/A
Completed NCT03466333 - Postnatal Enalapril to Improve Cardiovascular fUnction Following Preterm Pre-eclampsia Phase 2
Completed NCT03693365 - Fluid Responsiveness Tested by the Effective Pulmonary Blood Flow During a Positive End-expiratory Trial
Completed NCT04082585 - Total Health Improvement Program Research Project
Completed NCT05132998 - Impact of a Comprehensive Cardiac Rehabilitation Program Framework Among High Cardiovascular Risk Cancer Survivors N/A
Completed NCT05067114 - Solutions for Atrial Fibrillation Edvocacy (SAFE)