Clinical Trials Logo

Clinical Trial Summary

An important mechanism responsible for clinical recovery after neurological damage of different types is synaptic plasticity. Nervous tissue can enhance or de-energize inter-neuronal transmission at synaptic level in a lasting way. By increasing the efficiency of synaptic transmission, through long-term potentiation (LTP), it is possible to compensate for the loss of synaptic pulses on survived neurons due to brain damage and to restore their function.

At synaptic level, LTP is mainly regulated by NMDA receptors. In animal models induction of plasticity in surviving neurons through the stimulation of NMDA receptors has been shown to limit the clinical manifestations of neuronal damage. Endogenous NMDA is synthesized by methylation of D-aspartate (Asp) by D-aspartatoartate methyltransferase . Moreover, Asp acts as a neurotransmitter capable of activating the NMDA receptor, since its biosynthesis, degradation, absorption and release occurs in the pre-synaptic neuron, and its release determines a response in Post-synaptic neurons. The expression of Asp in the SNC is very abundant during the embryonic period and in early years, whereas it is significantly reduced in adulthood.

Consistent with Asp ability of activating the NMDA receptor, recent studies have shown that oral administration of Asp increases LTP induction in mice. Preliminary studies by our group also showed an increase in LTP amplitude in subjects suffering from progressive forms of Multiple Sclerosis after 2 weeks of daily per os intake of 2660mg Asp.

It is also well known that the therapeutic exercise that characterizes a rehabilitative treatment is able to induce various benefits to the physical-functional and the cognitive-emotional spheres. In this regard, it has been extensively demonstrated how repeatedly performing a motor task can increase cortical excitability through the induction of LTP mechanisms.

Hypothesis Pharmacologically promoting the induction of cortical LTP by the intake of Asp in subjects with various types of brain damage (eg Multiple Sclerosis, Parkinson's Disease, Dementia) may favor the therapeutic effects of rehabilitative treatment.

Specific Objectives Evaluate the effects of Asp in improving the outcome of rehabilitative treatment resulting from brain damage of different origin.


Clinical Trial Description

An important mechanism responsible for clinical recovery after neurological damage of different types is synaptic plasticity. Nervous tissue can enhance or de-energize inter-neuronal transmission at synaptic level in a lasting way. By increasing the efficiency of synaptic transmission, through long-term potentiation (LTP), it is possible to compensate for the loss of synaptic pulses on survived neurons due to brain damage and to restore their function.

At synaptic level, LTP is mainly regulated by NMDA receptors. In animal models induction of plasticity in surviving neurons through the stimulation of NMDA receptors has been shown to limit the clinical manifestations of neuronal damage. Endogenous NMDA is synthesized by methylation of D-aspartate (Asp) by D-aspartatoartate methyltransferase . Moreover, Asp acts as a neurotransmitter capable of activating the NMDA receptor, since its biosynthesis, degradation, absorption and release occurs in the pre-synaptic neuron, and its release determines a response in Post-synaptic neurons. The expression of Asp in the SNC is very abundant during the embryonic period and in early years, whereas it is significantly reduced in adulthood.

Consistent with Asp ability of activating the NMDA receptor, recent studies have shown that oral administration of Asp increases LTP induction in mice. Preliminary studies by our group also showed an increase in LTP amplitude in subjects suffering from progressive forms of Multiple Sclerosis after 2 weeks of daily per os intake of 2660mg Asp.

It is also well known that the therapeutic exercise that characterizes a rehabilitative treatment is able to induce various benefits to the physical-functional and the cognitive-emotional spheres. In this regard, it has been extensively demonstrated how repeatedly performing a motor task can increase cortical excitability through the induction of LTP mechanisms.

Hypothesis Pharmacologically promoting the induction of cortical LTP by the intake of Asp in subjects with various types of brain damage (eg Multiple Sclerosis, Parkinson's Disease, Dementia) may favor the therapeutic effects of rehabilitative treatment.

Specific Objectives A double-blind study to evaluate the effects of D-aspartate in improving the outcome of rehabilitative treatment resulting from brain damage of different origin (eg Multiple Sclerosis, Parkinson's Disease, Dementia). This will be made possible thanks to the specific skills of a multidisciplinary team of neurologists and physiatrists, healthcare professionals such as physiotherapists, occupational therapists, psychologists, speech therapists and the support of a biomedical engineer. These professional figures are already available at the UCK Neurosurgery of the IRCCS Neuromed directed by the proposer and actively collaborate to optimize the therapeutic exercise of patients with neurological damage.

Population of the study This study aims to provide preliminary data on interaction between D-aspartate and therapeutic exercise in inducing LTP cortical phenomena. The sample estimate was made by analogy after a literature analysis. In view of the quite high risk of drop out, our intention is to recruit at least 100 subjects in a population of patients with cerebral injury of various origin, coming to the neurology department of IRRCS Neuromed, Pozzilli.

Inclusion and exclusion criteria are as specified below.

Study design Double-blind prospective study, between randomized, placebo-controlled parallel groups.

Recruited patients will be randomized to receive 2660 mg D-aspartate oral dosing once daily or placebo, in addition to the conventional treatment provided by the relevant staff, for a period of 6 weeks. Patients will also be undergoing a Therapeutic Exercise Program (ET). All conventional therapies taken by patients will be recorded by the operators. Patients will be evaluated at zero time before starting treatment (T-0W) after 6 weeks to evaluate the effects at the end of treatment (T-6W) , and at 12 weeks (T-12W) to evaluate the maintenance of long-term effects. Randomization will be balanced in accordance with age, sex and schooling.

The physiotherapy and/or speech therapy approach will differ among patients considering the different types of brain damage and the different levels of disability, according to the rehabilitation unit team for each case.

Expected results The present study aims to investigate whether the association between pharmacological treatment with D-aspartate and therapeutic exercise may be more effective than just therapeutic exercise in favor of synaptic plasticity and clinical recovery under it, in patients with various forms of brain damage.

The expected result based on previous studies on mice (Errico, 2008, Errico, 2011) is that D-aspartate, promoting neuronal plasticity and acting in synergy with therapeutic exercise, strengthens the recovery of deficits in patients with various types of brain damage. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03228524
Study type Interventional
Source Neuromed IRCCS
Contact
Status Recruiting
Phase Early Phase 1
Start date November 22, 2017
Completion date December 1, 2022

See also
  Status Clinical Trial Phase
Enrolling by invitation NCT05542108 - Adding Motion to Contact: A New Model for Low-cost Family Centered Very-early Onset Intervention in Very Preterm-born Infants N/A
Completed NCT03400904 - Extubation Strategies in Neuro-Intensive Care Unit Patients and Associations With Outcome.
Completed NCT06073145 - Transcranial Doppler Using Wearable Ultrasound Patch
Recruiting NCT03899532 - Remote Ischemic Conditioning in Traumatic Brain Injury N/A
Recruiting NCT06010823 - Safety and Efficacy Evaluation of the Robotic Enhanced Error Training of Upper Limb Function in Post-stroke and Post TBI Participants N/A
Not yet recruiting NCT05833568 - Five-day 20-minute 10-Hz tACS in Patients With a Disorder of Consciousness N/A
Withdrawn NCT04288076 - The Brain and Lung Interaction (BALI) Study N/A
Completed NCT03162484 - Physical Activity and Chronic Acquired Brain Injury N/A
Not yet recruiting NCT02756585 - Computed Tomography Perfusion in Patients With Severe Head Injury N/A
Terminated NCT01430988 - Observational Study of the BrainScope® Ahead™ M-100 in UK Emergency Department Patients With Head Injury N/A
Completed NCT01093053 - Mind-Body Skills Groups for the Treatment of War Zone Stress in Military and Veteran Populations N/A
Completed NCT00975338 - The LETS Study: A Longitudinal Evaluation of Transition Services
Completed NCT00878631 - Feasibility Trial of Traumatic Brain Injured Patients Randomized in the Prehospital Setting to Either Hypertonic Saline and Dextran Versus Normal Saline Phase 2/Phase 3
Completed NCT03166722 - Cerebral Regional Tissue Oxygen Saturation to Guide Oxygen Delivery in Preterm Neonates During Immediate Transition N/A
Not yet recruiting NCT04478812 - Tbit System Precision and Correlation of Different Blood Samples N/A
Recruiting NCT05309005 - Virtual Reality and Social Cognition After Acquired Brain Injury
Recruiting NCT05443542 - VIrtual Reality in Cognitive Rehabilitation of Processing Speed for Persons With ABI N/A
Completed NCT02702635 - Measuring Blood Flow Characteristics Using Dynamic Contrast Enhanced Magnetic Resonance Imaging N/A
Withdrawn NCT04247321 - Non-invasive Near-infrared Spectroscopy (NIRS) Versus Invasive Licox Intracranial Pressure N/A
Not yet recruiting NCT04386525 - Omega 3 and Ischemic Stroke; Fish Oil as an Option Phase 4