Clinical Trials Logo

Clinical Trial Summary

Cumulative evidence has demonstrated that cardiac repair after acute myocardial infarction (AMI) is characterized by a series of time-dependent events orchestrated by the innate immune system. This begins immediately after the onset of necrotic cell death with intense sterile inflammation and myocardial infiltration of a variety of immune cell subtypes including monocytes and macrophages during the first several days after MI. There is increasing evidence to suggest inflammation is not limited to the infarcted myocardium and systemic imbalances in the post-infarct inflammatory cascade can exacerbate adverse remodelling beyond the infarct site. Therefore, it is very important that therapies seek to target the intricate balance between pro- and antiinflammatory pathways timely after AMI. Human mesenchymal stem cells (hMSCs) have been shown to exhibit immunomodulation, angiogenesis, and paracrine secretion of bioactive factors that can attenuate inflammation and promote tissue regeneration, making them a promising cell source for AMI therapy. However, it has been proved in our and other studies that perfusion of WJMSCs after 5 days of AMI can only slightly improve left ventricular end-diastolic volume, which is the most important indicator of left ventricular remodeling. Thus, WANIAMI Trial is a randomized, double-blind, placebo controlled, phase#study designed to assess the safety and feasibility of intravenous infusion of WJMSCs in the treatment of patients in the acute phase ( within 24h) with the both of ST-Segment-Elevation or Non-ST-Segment-Elevation AMI.


Clinical Trial Description

At present, although the implementation of timely reperfusion strategies has reduced the acute mortality associated with AMI, improved patient survival has increased the incidence of chronic heart failure, due in large part to adverse remodeling of the damaged left ventricle (LV) following the initial ischemic event. However, recently, pathophysiological mechanisms of AMI reveal that begins immediately after the onset of necrotic cell death with intense sterile inflammation and myocardial infiltration of a variety of immune cell subtypes including neutrophils, monocytes and macrophages during the first several days after MI. Improved understanding in the interactions between cells, extracellular matrix (ECM) and signaling molecules within the injured myocardium have allowed development of novel experimental therapies. These therapies seek to target the intricate balance between pro- and anti-inflammatory pathways in an attempt to limit ischemic injury and prevent subsequent development of heart failure. Mesenchymal stem cells (MSCs), in particular, have emerged as potent paracrine modulators of inflammation that promote myocardial healing after infarction.

The latest cell biological studies have demonstrated that mesenchymal stem cells have a unique immunomodulatory function. MSCs contribute to a critical role in regulating the inflammatory microenvironment and interacting with immune cells, including T cells, B cells, natural killer (NK) cells, and dendritic cells (DCs). MSC induce anti- inflammatory macrophages, inhibit foam cell formation, suppress immune responses of endothelial cells and innate lymphoid cells, and increase phagocytic capacity, which indirectly suppresses T cell proliferation. In mouse AMI models, we found MSCs transplantation significantly reduced the number of inflammatory macrophages (M1), increased the number of anti-inflammatory macrophages (M2) and prevented the expansion of AMI during early stage of AMI. More recently, the paracrine potency might vary with sources and microenvironment of MSCs. MSCs isolated from fetal tissues such as umbilical cord (UC) and UC-blood (UCB) were shown to have increased secretion of anti-inflammatory factors (TGF-β,IL-10) and growth factors than MSCs obtained from adult adipose tissue or bone marrow. Our previous research found that the expression characteristics of special immunomodulatory genes of human umbilical cord Wharton's jelly-derived MSCs (WJMSCs). At present, many studies have demonstrated WJMSC possess s a robust immunomodulatory potential and anti-inflammatory effects through release of secretome consisting of a diverse range of cytokines, chemokines, and extracellular vesicles (EVs), the cross talk and interplay of WJMSCs and local environment reversely control and regulate the paracrine activity of MSCs. Thus WJMSCs are important regulators of immune responses and may hold great potential to be used as a therapeutic in AMI. In particular#safety and feasibility of WJMSCs transplant have been clearly proved by us and other studies in patients with AMI.

Given the current evidence, systemic paracrinemediated anti-inflammatory effects of WJMSCs can drive beneficial in therapy of AMI. These concepts lead to a potentially transformative strategy that intravenous delivery of WJMSCs, through systemic anti-infammatory mechanisms.

Therefore, the investigators performed a double-blind, placebo- controlled trial, randomly assigning 200 patients with AMI to receive three times at 30-day intervals for equal doses of 1x106 /kg of WJMSCs, first time infusing within 24h after AMI or placebo , to investigate the therapeutic efficacy and safety of WJMSCs in patients with acute ST-Segment-Elevation or Non-ST-Segment-elevation myocardial infarction. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04551443
Study type Interventional
Source Navy General Hospital, Beijing
Contact Ning K Zhang, MS
Phone 13011864761
Email zhangningkun2004@163.com
Status Not yet recruiting
Phase Phase 2
Start date November 1, 2020
Completion date December 30, 2022

See also
  Status Clinical Trial Phase
Recruiting NCT04451967 - Acute Myocardial Infarction Study in Northeastern China
Completed NCT05974397 - Nationwide Trends in Incidence, Healthcare Utilization, and Mortality in Hospitalized Acute Myocardial Infarction Patients in Taiwan
Not yet recruiting NCT04072081 - Drug-coated Balloon Versus Drug-eluting Stent in the Treatment of Coronary Artery Lesions in STEMI Patients in De Novo Coronary Lesions N/A
Recruiting NCT03940443 - Differences in Mortality and Morbidity in Patients Suffering a Time-critical Condition Between GEMS and HEMS
Recruiting NCT03707626 - Collateral Circulation to LAD and Wellens Sign
Active, not recruiting NCT02669810 - EXCELLENT (EXpanded CELL ENdocardiac Transplantation) Phase 2
Not yet recruiting NCT04104048 - Short Term Outcome of Primary Precutaneous Coronary Intervention in Ostial Versus Non Ostial Culprit Proximal Left Anterior Descending Artery Acute Myocardial Infraction
Active, not recruiting NCT02915107 - The SORT OUT IX STEMI OCT Trial N/A
Completed NCT02896543 - The Relationship of Change of Dendritic Cells Fractalkine and P-selectin Patients With Acute Myocardial Infarction N/A
Completed NCT02531165 - Platelet Inhibition After Pre-hospital Ticagrelor Using Fentanyl Compared to Morphine in Patients With ST-segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention N/A
Completed NCT02490969 - Copeptin Registry (proCORE) Biomarkers in Cardiology (BIC)-19 N/A
Withdrawn NCT01901471 - Cyclosporine in Acute Myocardial Infarction Complicated by Cardiogenic Shock Phase 2
Completed NCT02312336 - A Pilot Study of Transcoronary Myocardial Cooling N/A
Recruiting NCT02071342 - Study of ABSORB Stent in Acute Myocardial Infarction N/A
Completed NCT02070913 - COOL-AMI EU Case Series Clinical Study
Terminated NCT01972126 - MAGNetic QRS-Fragmentation in Patients With Myocardial InfarcTion and Moderately RedUceD Ejection Fraction N/A
Completed NCT01216995 - Safety and Efficacy of Adipose Derived Regenerative Cells (ADRCs) Delivered Via the Intracoronary Route in the Treatment of Patients With ST-elevation Acute Myocardial Infarction (AMI) Phase 2
Withdrawn NCT01678339 - Sicilian Administrative Data Base Study in Acute Coronary Syndrome Patients N/A
Completed NCT01887080 - Effects of Microcurrent in a Cardiovascular Rehabilitation Home-based Program N/A
Completed NCT01627457 - Heart Cycle Prestudy N/A