Clinical Trials Logo

Clinical Trial Summary

Critically ill patients need intravenous fluid therapy in order to correct or prevent problems with their fluid and/or electrolyte status and for renal protection. The decision for the optimal composition and amount of IV-fluids can be difficult and complex. It is well known that errors in fluid- and electrolyte management contribute to overall morbidity and mortality. For decades, urinary sodium was used to diagnose renal disease. Nevertheless, renal excretion of sodium is largely impaired in critically ill patients, particularly in patients with acute kidney injury. Due to the high frequent measurement of renal output, it would be possible to measure the urinary electrolytes and its relative changes. Urinary electrolyte measurement may alert for the presence of the development of an akute kidney injury before occurring increases in creatinine or oliguria. The rationale of this investigation is therefore to collect data related to fluid- and electrolyte management from critically ill patients in order to find patterns of fluid- and electrolyte imbalances which may lead to disturbances and further, may allow an early detection of acute kidney injury.


Clinical Trial Description

Critically ill patients need intravenous fluid therapy in order to correct or prevent problems with their fluid and/or electrolyte status and for renal protection. The decision for the optimal composition and amount of IV-fluids can be difficult and complex. It is well known that errors in fluid- and electrolyte management contribute to overall morbidity and mortality. Due to the administration of large volumes of normal saline and/or a decreased urinary output of sodium or chloride iatrogen electrolyte disorders, such as hyperchloremic acidosis or dysnatremia are common abnormalities in the clinical practice. The common fact that normal saline has non-physiological levels of chloride and sodium, intensifies this problem with high volume administration. (Burdett et al. 2003; Adrogué & Madias 1997). Hypernatremia is an independent risk factor for mortality in critically ill patients and increases the length of ICU stay (Lindner et al. 2010; Stieglmair et al. 2013) Hypernatremia is associated with impaired renal fluid regulation, as well as a lack of thirst mechanisms. In the ICU this fact requires exact measurement of all fluid- and electrolyte intake and (non-)renal losses. (Lindner et al. 2009). Therefore, in critical care settings measuring fluid balance (the difference between infusion input and renal / non-renal losses) is daily routine. The renal output is measured frequently by the nursing staff. An automated acquisition of the urinary output combined with the data of the infusion site would reduce the workload of the staff and would allow visualization of the fluid status. Furthermore, beyond volume, the concentration and composition of the fluid is an important parameter. The comparison of urinary electrolytes with the electrolyte input from infusions allows an early detection of electrolyte disorders (Besen et al. 2015). Sodium and chloride are the main ions of solutions infused into critically ill patients. The excessive infusion of fluids lead to sodium and chloride overloads and is associated with higher mortality (Noritomi et al. 2009). For decades, urinary sodium was used to diagnose renal disease. Nevertheless, renal excretion of sodium is largely impaired in critically ill patients, particularly in patients with acute kidney injury. Due to the high frequent measurement of renal output, it would be possible also to measure the urinary electrolytes and its relative changes which are likely to be more relevant than the absolute electrolyte concentrations. Urinary electrolyte measurement may alert for the presence of AKI development before occurring increases in creatinine or oliguria (Maciel 2013; Maciel et al. 2015; Molitoris 2013). The rationale of this investigation is therefore to collect data related to fluid- and electrolyte management from critically ill patients in order to find patterns of fluid- and electrolyte imbalances which may lead to disturbances and further, may allow an early detection of acute kidney injury (AKI). Patients undergoing scheduled cardiac surgery will be included in this trial. The rationale behind this is on the one hand, that the patient cohort is homogenous and on the other hand, that the risk for developing an AKI is 30-40% among cardiac surgery patients (Rosner et al. 2006). The aim is to detect characteristic patterns in electrolyte metabolism between patients who develop an AKI and those who do not. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02914782
Study type Observational [Patient Registry]
Source Medical University of Graz
Contact
Status Completed
Phase
Start date September 2016
Completion date October 2022

See also
  Status Clinical Trial Phase
Recruiting NCT05538351 - A Study to Support the Development of the Enhanced Fluid Assessment Tool for Patients With Acute Kidney Injury
Recruiting NCT06027788 - CTSN Embolic Protection Trial N/A
Completed NCT03938038 - Guidance of Ultrasound in Intensive Care to Direct Euvolemia N/A
Recruiting NCT05805709 - A Patient-centered Trial of a Process-of-care Intervention in Hospitalized AKI Patients: the COPE-AKI Trial N/A
Recruiting NCT05318196 - Molecular Prediction of Development, Progression or Complications of Kidney, Immune or Transplantation-related Diseases
Recruiting NCT05897840 - Continuous Central Venous Oxygen Saturation Measurement as a Tool to Predict Hemodynamic Instability Related to Renal Replacement Therapy in Critically Ill Patients N/A
Recruiting NCT04986137 - Fractional Excretion of Urea for the Differential Diagnosis of Acute Kidney Injury in Cirrhosis
Terminated NCT04293744 - Acute Kidney Injury After Cardiac Surgery N/A
Completed NCT04095143 - Ultrasound Markers of Organ Congestion in Severe Acute Kidney Injury
Not yet recruiting NCT06026592 - Detection of Plasma DNA of Renal Origin in Kidney Transplant Patients
Not yet recruiting NCT06064305 - Transcriptional and Proteomic Analysis of Acute Kidney Injury
Terminated NCT03438877 - Intensive Versus Regular Dosage For PD In AKI. N/A
Terminated NCT03305549 - Recovery After Dialysis-Requiring Acute Kidney Injury N/A
Completed NCT05990660 - Renal Assist Device (RAD) for Patients With Renal Insufficiency Undergoing Cardiac Surgery N/A
Completed NCT04062994 - A Clinical Decision Support Trial to Reduce Intraoperative Hypotension
Terminated NCT02860130 - Clinical Evaluation of Use of Prismocitrate 18 in Patients Undergoing Acute Continuous Renal Replacement Therapy (CRRT) Phase 3
Completed NCT06000098 - Consol Time and Acute Kidney Injury in Robotic-assisted Prostatectomy
Not yet recruiting NCT05548725 - Relation Between Acute Kidney Injury and Mineral Bone Disease
Completed NCT02665377 - Prevention of Akute Kidney Injury, Hearttransplant, ANP Phase 3
Terminated NCT03539861 - Immunomodulatory Biomimetic Device to Treat Myocardial Stunning in End-stage Renal Disease Patients N/A